
Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Year 12 : Visual Basic Tutorial.

Subroutines.

A subroutine is a small program that performs a specific task. It can be ‘called’ from
anywhere in a larger program. When the subroutine has been run, program execution
returns to the larger program.

There are two main types of subroutine:

Procedures – that perform a specific task.

Functions – perform a task and return a value. Functions are frequently used for
calculating something.

You have already met procedures because the event handlers are examples of
procedures… but you can make your own. You are encouraged to do this because it
creates a better structure to your program.

Bad programs have lots of repeated code. Good programs have lots of subroutines.

HANDS
ON

[1] Create a new Windows Application.

On your form place a TextBox (TextBox1) and a Buttons (btnChange).
Arrange them like this…

You are going to write a program using procedures, that toggles the colour
schemes between two different schemes.

[2] You will need a variable to keep track of the current colour scheme, so make this

declaration immediately after the Public Class Form1 line…

 Dim CurrentScheme As Integer = 1

Remember this means that we can use this variable in any subroutine on this
form (Class).

It is initialised to the value 1 when the program is run.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Subroutines.doc

Visual Basic : Year 12 Tutorial Booklet

[3] The program consists of two subroutines (procedures). They are called
SetColourScheme1 and SetColourScheme2. They are both called from the event
handler btnChange_Click.

 Type in the rest of the program as you see it here:

Public Class Form1

 Dim CurrentScheme As Integer = 1

 Private Sub SetColourScheme1()
 Me.BackColor = Color.Blue
 TextBox1.BackColor = Color.White
 TextBox1.ForeColor = Color.Blue
 btnChange.BackColor = Color.White
 btnChange.ForeColor = Color.Blue
 CurrentScheme = 1
 End Sub

 Private Sub SetColourScheme2()
 Me.BackColor = Color.White
 TextBox1.BackColor = Color.Blue
 TextBox1.ForeColor = Color.White
 btnChange.BackColor = Color.Blue
 btnChange.ForeColor = Color.White
 CurrentScheme = 2
 End Sub

 Private Sub btnChange_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnChange.Click
 If CurrentScheme = 1 Then
 SetColourScheme2()
 Else
 SetColourScheme1()
 End If
 End Sub
End Class

[4] Run the program, and enter text in the text box before pressing the button to

change the colours.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Subroutines.doc

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Functions

Functions are procedures that return a value – in other words they work something out
and assign the answer to the function name.

A function must have two things…

 [1] a declared type for the returned value

[2] an assignment to the function name (saying what the value of the
function is).

This example is a function that works out the largest of two numbers entered into two
text boxes (txtFirst and txtSecond).

 Private Function Largest() As Integer
 If txtFirst.Text > txtSecond.Text Then
 Largest = txtFirst.Text
 Else
 Largest = txtSecond.Text
 End If
 End Function

The function is called inside an event handler by name and then, for example assigning it
to a variable of the correct type…

Dim BestMark As Integer

BestMark = Largest()

…or assigned to the property of an object…

txtBestMark.Text = Largest()

HANDS
ON

Visual Basic Challenges 8.

[1] Use the function above to create

a program that allows the user to
enter two exam marks and displays
which of the two is the highest mark.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Subroutines.doc

Visual Basic : Year 12 Tutorial Booklet

Parameters

Subroutines only really become useful when we pass parameters to them.

A parameter is a value that is passed to the subroutine. When the subroutine is
executed, it will use this value.

HANDS
ON

Example : A procedure that draws a line of Xs in a TextBox…

[1] Create a new Windows application.

Add two Labels, two TextBoxes(txtFirst and txtSecond) and a Button (btnAdd).
Also add RichTextBox(rtbAdd)…

[2] On the Click event of button btnAdd add the event handler…

Private Sub btnCalculate_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnCalculate.Click

Dim Answer As Double
 Answer = Val(txtFirst.Text) + Val(txtSecond.Text)

 'Display calculation in TextBox
 rtbAdd.Clear()
 rtbAdd.AppendText(txtFirst.Text)
 rtbAdd.AppendText(vbCrLf) 'takes a new line
 rtbAdd.AppendText(txtSecond.Text)
 rtbAdd.AppendText(vbCrLf)
 rtbAdd.AppendText("----------") '10 dashes
 rtbAdd.AppendText(vbCrLf)
 rtbAdd.AppendText(Answer)
 rtbAdd.AppendText(vbCrLf)
 rtbAdd.AppendText("----------")
 rtbAdd.AppendText(vbCrLf)
End Sub

There are two lines that are repeated here for drawing the line of dashes – this
is never a good thing and you should avoid repeated code in programming.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Subroutines.doc

Visual Basic : Year 12 Tutorial Booklet

[3] Run the program and enter two numbers. The addition calculation should be
displayed.

[4] To avoid repeated code … create your own subroutine…Change your code to the

following:

 Private Sub DrawLine()
 rtbAdd.AppendText("----------")
 rtbAdd.AppendText(vbCrLf)
 End Sub

Private Sub btnCalculate_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnCalculate.Click

 Dim Answer As Double
 Answer = Val(txtFirst.Text) + Val(txtSecond.Text)

 'Display calculation in TextBox
 rtbAdd.Clear()
 rtbAdd.AppendText(txtFirst.Text)
 rtbAdd.AppendText(vbCrLf) 'takes a new line
 rtbAdd.AppendText(txtSecond.Text)
 rtbAdd.AppendText(vbCrLf)
 DrawLine()
 rtbAdd.AppendText(Answer)
 rtbAdd.AppendText(vbCrLf)
 DrawLine()
 End Sub

Note that your procedure is called DrawLine and is called twice by the event
handler.

[5] Now for some improvements….

 First, it is better to use a loop in the DrawLine procedure, so change it to…

 Private Sub DrawLine()
 Dim i As Integer
 For i = 1 To 10
 rtbAdd.AppendText("-")
 Next i
 rtbAdd.AppendText(vbCrLf)
 End Sub

O:\Docs\VB Tutorial\VB Tutorial Year 12_Subroutines.doc

Visual Basic : Year 12 Tutorial Booklet

[6] The procedure is fine for drawing lines of 10 dashes…but maybe sometimes we
would like lines of 20 dashes, …or 25 dashes etc…

 To make the procedure more useful we pass a parameter to it….

 Private Sub DrawLine(ByVal NumDashes As Integer)

 Dim i As Integer
 For i = 1 To NumDashes
 rtbAdd.AppendText("-")
 Next i
 rtbAdd.AppendText(vbCrLf)
 End Sub

 NumDashes is the parameter. It is declared in the heading of the procedure-

the data type of the parameter must also be declared.

In the event handler you will need to pass a value for the parameter – this must
match the data type (integer in this case)…so change the lines that call the
procedure to…

 ……… DrawLine(30)

………
 DrawLine(25)

 Running the program now should result in a display similar to this…

Summary

A subroutine is a small section of program code that can be called from other parts of
a program. There are two types:

Procedure – that performs a specific task
Function – that performs a task and returns a value.

Parameters are passed to subroutines to make them useful.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Subroutines.doc

Visual Basic : Year 12 Tutorial Booklet

Visual Basic Challenges 8

[2] Enhance the above program so that you can pass two parameters to the DrawLine

procedure –
• the number of characters to be drawn
• the character to use

So the instruction DrawLine(12,”@”) would produce “@@@@@@@@@@@@”

Test your program by seeing if you can reproduce this screen display…

[3] (a) Write a new application that allows the user to input a string and encodes it

by taking the ‘next’ character in the alphabet for each letter.

 Include a function in your application that encrypts a string.

 Test data : Input – APPLE Output – BQQMF

(b) Add a new section that decrypts a coded string.

Test Data : Input – BQQMF Output – APPLE

O:\Docs\VB Tutorial\VB Tutorial Year 12_Subroutines.doc

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Modules.

A module is a library of subroutines that can be used in other programs. It is a really
good idea to use modules because…

• it saves time programming if you can use subroutines you have created in other
programs

• you know they will work because they have already been tested.

Any subroutine in a module can be called from anywhere in your program.

Global variables and constants can be declared in a module and used anywhere in the
program.

Using constants is also a good idea because if their value changes, then you only have to
change the value once in the module, and not in all the places the value is used in the
program.

To add a module to a program click the [Project] menu and the [Add New Item…] option.
Make sure you select the [Module] option…

The Module should appear in your Solution Explorer window.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Subroutines.doc

