

Visual Basic

2005 Express
Edition

The Teacher

Visual Basic : Year 12 Tutorial Booklet

Year 12 : Visual Basic Tutorial.

Our First Program

HANDS
ON

(Objects and Properties)

[1] Create a New Visual Basic Project. (Select Windows Application)
 Name it HelloWorld.

When VB opens, the first Form of the project will be displayed in the Designer
area.

If you click on the Form, the Properties of the form are displayed in the
Properties box.

Set the following values for the properties of the Form:

Property Value
Name frmHelloWorld
BackColor AliceBlue
Text Hello World
Size 350,180
StartPosition CentreScreen

It is important to set the properties of the form first.

[1] Form names should always start with frm…. Though this is not vital it is
important to conform with commonly accepted practices.
In a similar way, names (such as HelloWorld) are usually made up from a
number of words where the first letter of each word is in capitals.

O:\Docs\VB Tutorial\VB Tutorial Year 12.doc

Visual Basic : Year 12 Tutorial Booklet

[2] Onto the form drag a Label from the ToolBox.

 …and set its properties as follows….

Property Value
Name lblMessage
BackColor DarkBlue
ForeColor White
Font Size 24
Text Hello World

 All other properties you can leave as their default values.

[3] SAVE the project.

[4] To run the program, click on the ‘Start Debugging’ button –
 Or press [f5]

This compiles (VB calls it building) and then runs the program.

 If you have not made any errors, you should see the program running in a

window…

 You can stop the program running by closing the window in the normal way, or

using the button

Summary

Windows applications are created by…

• Creating Forms
• Placing Objects on Forms
• Setting the default properties of the objects
• Writing code (see next section)
• Compiling (building) and running the program.

O:\Docs\VB Tutorial\VB Tutorial Year 12.doc

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Year 12 : Visual Basic Tutorial.

Input and Output
(Text Boxes)

The three stages of a computer process…

• Input
• Processing
• Output

HANDS
ON

Data is usually input using TextBoxes.

[1] Create a new Windows Application Project called ‘Calculator’.

 Set the Form properties:

Property Value
Name frmCalculator
BackColor Linen
Text Calculator
Size 350,180
StartPosition CentreScreen

[2] Place a TextBox on the form with the following properties:

Property Value
Name txtFirstNumber
Location 30,45
Size 67,20

 And a Label with the properties:

Property Value
Name lblFirst
Location 27,29
Text Please enter the first number:

Your form
should look
like this.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Input_Output.doc

Visual Basic : Year 12 Tutorial Booklet

[3] Add another TextBox (txtSecondNumber) and Label (lblSecond) to the form and
line them up so the form looks like :

 (NOTICE the lines on the form that help you line objects up)

[4] Add another TextBox (txtAnswer), a Label (lblAnswer) and a Button

(btnAnswer) to your form…

Arrange your
objects to look
similar to this
diagram.

This is the end of the first stage of your program - Creating the interface by adding
objects to your form and setting the properties.

[5] Stage 2 – Adding the code for the event handlers….

 Only one event-handler to write. The Click event of the Button btnAnswer.

 Double-click on btnAnswer to open the Code Window…and type this subroutine….

 Private Sub btnAnswer_Click

 'Declare the variables
 Dim First As Integer
 Dim Second As Integer

 'Assign values to the variables from the Inputs
 First = txtFirstNumber.Text
 Second = txtSecondNumber.Text

 'Output the answer
 txtAnswer.Text = First + Second

 End Sub

O:\Docs\VB Tutorial\VB Tutorial Year 12_Input_Output.doc

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Explanation:

[a] The Green lines are comments. These are important! They explain what each section

of code does. These are a useful reminders for YOU…and should always be included.

 Also useful is ‘white space’ the blank lines between sections of the code.

[b] Variables are quantities that may be different each time a program is run. The

computer needs to know what variables you are going to use and what type they are.
(see List at the end of this section)

 Your subroutine uses two variables called First and Second. They are both of integer

type.

[c] First = txtFirstNumber.Text

The input line. This line assigns the value of the Text property of txtFirstNumber to
the variable First. In other words the value of First becomes the number in the
Textbox at the time the button is clicked.

Make sure you fully understand how an assignment statement works – you will be
using them a lot!

A = B
….assigns the value of B to the variable A. This means that the value of A changes
…but the value of B does not.

[d] txtAnswer.Text = First + Second

The output line - txtAnswer will display the result of the calculation.

This is really another assignment statement, where the value of the Text property
of txtAnswer is given the value that is the sum of the two numbers.

Phew! – Some important stuff there!

HANDS
ON

[6] Run the program and check that it works.

(Input two numbers and click the button)

O:\Docs\VB Tutorial\VB Tutorial Year 12_Input_Output.doc

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Table of Data Types.

Data Type Comment Size Example
Char Any character 1 byte ‘A’
String Up to about 2 billion

characters
2 bytes per
character

‘Tom Jenkins’

Byte 0 to 255 1 byte 29
SByte -128 to 127 1 byte -3
Short -32,768 to 32,767 2 bytes 3278
UShort 0 to 65,535 2 bytes 49312
Integer -2,147,483, to

2,147,483,647
4 bytes 629,439

UInteger 0 to 4,294,967,295 4 bytes 3,120,000,000
Long Massive whole

numbers
8 bytes 7,444,555,666,777

ULong Massive whole
numbers

8 bytes 32,456,457,645,999

Single Real numbers 4 bytes 125.99
Double Real numbers 8 bytes 3.14159265
Decimal Real Numbers 16 bytes 36,689.87514
Boolean True or False 1 bit True
Date Jan 1st, 0001 to

Dec 31st, 9999
8 bytes 6/3/2012

When a variable is declared in a program, it is really an instruction to the computer to
reserve some space in memory, where the value of that variable will be stored. The
amount of memory space reserved depends on the type of the variable. (see above
table)…so it is good programming practice to declare variables as small types whenever
possible.

Example - Don’t use an Integer when a Byte would do.

When a subroutine has run and finished, the space reserved for local variables declared
in that subroutine will be released.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Input_Output.doc

Visual Basic : Year 12 Tutorial Booklet

HANDS
ON

Visual Basic Challenges 1

[1] Create an application that has a Label and two buttons. When one of the buttons

is clicked, the message reads ‘Hello’ in Green, and when the other button is
clicked the message reads ‘Goodbye’ in Red.

[2] Create an application where a button displays the message “Hello World” in RED

when the mouse button is pressed down, and in GREEN when the button is
released. (HINT : Use The MouseDown and MouseUp events)

[3] Create an application which looks like this when run…

 There is an invisible

Label below the
button.

 When the program is run, the user enters a name into the TextBox and clicks on

the button to reveal the message…

HINT : You can add
text strings
together…
“BULL” + “FROG” is
the string
“BULLFROG”

O:\Docs\VB Tutorial\VB Tutorial Year 12_Input_Output.doc

Visual Basic : Year 12 Tutorial Booklet

Other Methods of Input and Output

HANDS
ON

(InputBox; MsgBox)

Another method of input involves using an InputBox….

[1] You are going to write a program that allows the user to input a number, and

outputs its square (Eg Input :7 and output:49)

Create an application with a form that has a Button (btnDisplay) and a TextBox
(txtMessage). Arrange the objects to look like this…

Enter the following event handler for the Click event of btnDisplay…

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Button1.Click
 'Declare variables
 Dim Num As Integer
 Dim Answer As String

 'Open the Input Box and assign the value of Num
 Num = InputBox("Please Enter Your Number", "Input Window")

 Answer = "The square of " + Num.ToString + " is " + _

(Num * Num).ToString

 'Display the message in the TextBox
 txtMessage.Text = Answer

 End Sub

The InputBox statement in your subroutine has two parameters – both are
strings. The first string (“Please Enter Your Number”) is the message prompt,
the second (“Input Window”) is the Window title.

When the program is run, whatever is typed into the InputBox is returned as the
value of variable Num… and this variable can then be used in your program.

[2] Run the program….

..and type
in your
number

O:\Docs\VB Tutorial\VB Tutorial Year 12_Input_Output.doc

Visual Basic : Year 12 Tutorial Booklet

When you click the OK button, the message should appear in your form….

NOTE : Strings may be added together, but sometimes you need to turn a number into a
string first.

That is why you will see Num.ToString in the message

Also…If a line of code is too long, place a <space> and a _ character at the end of the line _
 and continue on the next. (like the line above)

HANDS
ON

Using an MsgBox …. Another way to output data.

[1] Create a new application and place a Button (btnOutput) on the Form.

 Type in the event handler for the Click event of btnOutput…

Private Sub btnOutput_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnOutput.Click
 MsgBox("Keep Smiling!")
 End Sub

Run the program.

[2] Try changing the subroutine to…

Private Sub btnOutput_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnOutput.Click
 MsgBox("Are you still smiling?", MsgBoxStyle.Question,
"Output Demo")
 End Sub

O:\Docs\VB Tutorial\VB Tutorial Year 12_Input_Output.doc

Visual Basic : Year 12 Tutorial Booklet

Year 12 : Visual Basic Tutorial.

Events
(To give functionality to your program; Button)

HANDS
ON

[1] Add a Button to your form and set the following properties:

Property Value
Name btnDisplayMessage
BackColor DarkBlue
ForeColor White
Location 110, 120
Size 120, 25
Text Display Message

[2] Change the following property of the Label lblMessage

Property Value
Visible False

 This will make the ‘Hello World’ message invisible when the program first runs.

[3] Run the program now. The label should be invisible…but the button will do nothing

when you click on it.

The next step is to write the code that causes the label to become visible when
the button is clicked….

Stop the program running.

An Event is an action (such as clicking a mouse) that causes a small program
called a subroutine to run.

This subroutine is often referred to as an event handler.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Events.doc

Visual Basic : Year 12 Tutorial Booklet

[4] Double-click on the Button.

 The Code Window should open as a tabbed window….

Some program lines have already been added for you. All the subroutines for the
form are grouped into a Class…and you can see the start and end statements for
this.

We’ll worry about Public and Private later…
Sub stands for Subroutine.

The subroutine is called btnDisplayMessage_Click…because it is the event
handler for the Click event of the button btnDisplayMessage.

Other items in the Subroutine header do not concern us at the moment…

[5] Type in the one line of code so the subroutine looks like…
(to keep things simpler, the subroutine heading is not complete)

Private Sub btnDisplayMessage_Click
 lblMessage.Visible = True

End Sub

Note how Visual Basic tries to help you as you type the code. This is a really,
really, really useful feature and should always be used. If it does not … then you
have made a mistake!

[6] Run the program and click the button…all should be revealed!

Summary
• Subroutines are small programs that can be called (run) at any time.
• Event-handlers are subroutines that are run when an event associated with an object

occurs.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Events.doc

Visual Basic : Year 12 Tutorial Booklet

Year 12 : Visual Basic Tutorial.

STUDY
THIS

More about … Identifiers : Variables and Constants.

Computers process data – that’s what they do!

Data is input, then it is processed, then the results are output. The data that is
processed may be of a number of different types, but every item of data used by a
program must be declared – ie. The computer must be told beforehand what data is
used, what it is called and what type it is.
This is done using a variety of different statements…

Dim

Eg. If an integer variable is going to be used to store an exam mark, we may
use…

Dim ExamMark As Integer

‘ExamMark’ is the identifier name; and it is of type Integer.

Const
Eg. If a constant is going to be used to store the VAT percentage rate, we

may use …

 Const VATPercentageRate As Single = 17.5

HINTS :
• Always use self-documenting code - meaningful names for your

identifiers. This will be a good habit to adopt, and will help you
develop your programs. (Don’t be lazy about typing in long identifier
names like ‘CustomerFirstName’.)

• Always use a constant if possible. This will make it easier to change
the values of the data later. In fact only one change should be made –
instead of changing the values all the way through the program!

Local and Global Variables

If a variable is declared inside a subroutine then it is only allowed to be used inside that
subroutine. This is called a local variable. Once the subroutine has been run, the space
used to store the variable is released by the computer to be used by other processes.

If a variable is declared inside a class, it may be used in any of the subroutines inside
that class. This is called a global variable. The computer reserves space and protects it
for the whole time the form is opened.
If you want a global variable (or constant) that can be used throughout all forms
(classes) of a project use the Public declaration…
Eg. Public FilePath As String
 Public Const Pi As Double = 3.1415927

O:\Docs\VB Tutorial\VB Tutorial Year 12_Identifiers.doc

Visual Basic : Year 12 Tutorial Booklet

Operators.

The basic operators that can be used are shown in the table below:

Operator Description
+ Add
- Subtract
* Multiply
/ Divide
\ Integer division

Mod The remainder when numbers are divided
^ Exponent (power)
& String concatenation (joining)

Examples : (Assuming these declarations and values…)

'Variable declarations
 Dim Num1 As Single, Num2 As Integer

 'Assign values to the variables
 Num1 = 13
 Num2 = 5

Then…
Num1 / Num2 = 2.6

 Num1 \ Num2 = 2
 Num1 Mod Num2 = 3

 Num1 ^ Num2 = 371293

String concatenation is the correct word for ‘adding’ two strings together.

Eg. “TOM” & “ “ & “JONES” = “TOM JONES”

(NB You can use the operator ‘+’ to concatenate strings if you prefer…)

Summary
All data used in a program is labelled with an identifier - a name that makes it easy for us to
recognise.

A variable is an identifier that may change each time we run a program.

A constant is an identifier that is the same every time the program is run.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Identifiers.doc

Visual Basic : Year 12 Tutorial Booklet

HANDS
ON

Visual Basic Challenges 2

[1] Create a Factor Test program that displays the remainder when one number is

divided by another number.

 The interface should look like the form below…

Test Data : 24 divided by 5 has a remainder of 4.
 30 divided by 6 has a remainder of 0 (6 is a factor of 30)

Use your program to find the factors of 189
(HINT A factor will give a remainder of 0)

[2] (a) Create an application that allows the user to input their name (Eg. Tom),
and when an ‘Enter’ button is clicked, the name of the form at the top changes to
‘Tom’s Program’

 HINT : When coding the program, the Form is referred to as Me.

RESEARCH
NEEDED

(b) Now try adding the current Date as well…

O:\Docs\VB Tutorial\VB Tutorial Year 12_Identifiers.doc

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Year 12 : Visual Basic Tutorial.

Conditional Statements

If [Condition is true] Then [Statement]

The Statement will only be executed if the Condition is true.

The Condition must be an expression that is either True or False.
Eg.

If (txtMark.Text > 20) Then txtGrade.Text = "Winner!"

Sometimes, usually if more than one statement is to be executed, this may be written as
a block…

Eg.

If (txtMark.Text > 20) Then
 txtGrade.Text = "Winner!"
 txtGrade.ForeColor = Color.Red
End If

Comparisons that can be used in the Conditions :

Comparison Meaning
= Equal to
<> Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

A more complex version of the Conditional statement…

If [Condition is true] Then [Statement1] Else [Statement2]

If the Condition is true then Statement1 will be executed…if not, then Statement2 will
be executed.

If (txtMark.Text > 50) Then
 txtGrade.Text = "Winner!"
 txtGrade.ForeColor = Color.Red
 Else
 txtGrade.Text = "Loser!"
 txtGrade.ForeColor = Color.Black
 MsgBox("Try again!")
End If

Eg.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Conditional.doc

Visual Basic : Year 12 Tutorial Booklet

Testing several conditions….

Several conditional expressions may be evaluated using If..Then…ElseIf…Else..End If .
The syntax for this is shown in the box below…

If (conditon1) Then
 Statements executed if conditon1 is true
ElseIf (condition2) Then
 Statements executed if conditon2 is true
ElseIf (condition3) Then
 Statements executed if condition3 is true
Else
 Statements executed if none of the conditions is true
End If

Example :

A shop offers a 10% discount if a customer buys more than £100 worth of goods, 5%
discount if a customer buys more than £50 worth and no discount otherwise.

The code for this may look something like…

If (TotalAmount > 100) Then
 Discount = 10
 ElseIf (TotalAmount > 50) Then
 Discount = 5
 Else
 Discount = 0
End If

Select Case

Another method of selection is provided by the Select Case structure. Here is an
example…

 Select Case ExamGrade

 Case "A"
 Label1.Text = "Excellent"
 Case "B"
 Label1.Text = "Brave attempt"
 Case "C"
 Label1.Text = "Average"
 Case Else
 Label1.Text = "Room for improvement"
End Select

This is a better method when the action depends on the value of a variable. In the
example above, the Text property of Label1 depends on the value of the variable
ExamGrade.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Conditional.doc

Visual Basic : Year 12 Tutorial Booklet

HANDS
ON

Visual Basic Challenges 3

[1] When running a program, a user has to enter their name and a password. Write a

program that outputs the message “Welcome” when the correct password is
entered. You may choose the password yourself, but it should be hidden when it
is being typed in (Check the properties of a TextBox carefully!)

 Enhance the program so that the message is personalised. For example if the

username is ‘Tom’ and the password is incorrect, the message “Welcome Tom”
should be output.

[2] Computing exam marks are graded as follows:

‘A’ if the mark is 80% or more,
‘B’ if the mark is between 70 and 79,
‘C’ if the mark is between 50 and 69,
‘D’ for marks less than 50.

Write a program that allows a user to enter an exam mark and display the
appropriate grade.

[3] Write an application that allows the user to input a number between 1 and 30 and
outputs it as a date in September.

 Eg. Input 2 and the output should be ‘September 2nd’
 Input 23 and the output should be ‘September 23rd’

O:\Docs\VB Tutorial\VB Tutorial Year 12_Conditional.doc

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Logical Operators

The logical operators AND, OR, XOR and NOT can be used in conditional statements.

Logical
operator

Meaning

AND If both conditions are TRUE, the result is TRUE
OR If either of the conditions is TRUE, or both, then the result is TRUE

XOR If only one of the conditions is true (not both) then the result is TRUE
NOT If the condition is TRUE, the result is FALSE. If the condition is FALSE,

the result is TRUE

Example : Tom’s password is ‘Hedgehog’. He must enter his name and his password to
gain access to a program…

If (txtName.Text = "Tom") And (txtPassword.Text = "Hedgehog")
Then
 MsgBox("Successful LogIn")
End If

Example : A message “Welcome” is displayed but not if it is Saturday or Sunday.

If Not ((Now.DayOfWeek.ToString = "Saturday") Or
(Now.DayOfWeek.ToString = "Sunday")) Then
 MsgBox("Welcome")
End If

HINT : It is good practice to put each condition in brackets to avoid confusion!

Visual Basic Challenges 3 (continued)

HANDS
ON

[4] A customer can buy a carpet online by entering the Length, Width and Type of

carpet required. The types of carpet are summarised in this table…

Type Cost per sq. metre Discount
A £12.49 10%
B £10.99 5%

Write a carpet cost calculator program and test it with the following data…

Test Data :
(1) Type A, 4.5 metres by 9.5 metres – Total cost = £480.55
(2) Type B, 3 metres by 8 metres – Total Cost = £250.57

O:\Docs\VB Tutorial\VB Tutorial Year 12_Conditional.doc

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Year 12 : Visual Basic Tutorial.

Loops.

A Loop is a section of code that needs to be repeated a number of times. The posh term
for this repetition is ITERATION.

There are two situations…

A. You know how many times to repeat the loop
(Use a For…Next loop)

B. The loop is repeated until a certain condition is met
(Use a Do While or Do Until loop)

A : For…Next Loops

An integer variable is needed to count the number of times the loop is run.

The syntax is…

For variable = start value to end value
 statements to be repeated
Next [variable]

HANDS
ON

[1] Create a new Windows Application project.

Place on the Form a Listbox and a Button.
(Leave them called ListBox1 and Button1)

 Add the event handler for the Click event of Button1:

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

 Const Num As Integer = 10

 Dim i As Integer

 For i = 1 To 5
 ListBox1.Items.Add(Num)
 Next

End Sub

The variable i is called the control variable for the loop – it MUST be an integer
variable and, basically it counts from 1 to 5.
The loop adds the number 10 to the ListBox 5 times.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Loops.doc

Visual Basic : Year 12 Tutorial Booklet

Run the program and click the button to see this.

[2] Change the program so the name ‘Tom’ appears 3 times in the ListBox.

[3] You can also use the value of the control variable inside the loop…

…See if you can output all the numbers from 1 to 10 inside the ListBox.

 …and you should even be able to output this…

[4] For even more complex loops, try using the Step instruction…

 Dim i As Integer

 For i = 0 To 50 Step 5
 ListBox1.Items.Add("Line " & i)
 Next

O:\Docs\VB Tutorial\VB Tutorial Year 12_Loops.doc

Visual Basic : Year 12 Tutorial Booklet

HANDS
ON

Visual Basic Challenges 4

[1] Create a new Windows Application project called ‘Factors’.

 Write a program that allows the user to enter an integer, and find all the

factors of that integer. You need to do this by checking every number between 1
and the input number to see if there is a remainder when they are divided.

HINTS :
• Remember to clear the ListBox of items.
• To find whether R is a factor of a number N, you need to check there

is no remainder when N is divided by R.
i.e. if N Mod R = 0 then R is a factor of N.

[2] Write an application that allows the

user to input a number, and
the times table (up to 12)
is displayed.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Loops.doc

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Do Loops
(Loops that are repeated until a condition is TRUE)

The syntax is:

 Do While [condition]

 statements to be repeated
Loop

or…

Do
 statements to be repeated
Loop Until [condition]

In the first case, the condition is checked BEFORE the loop (so the loop may never be
executed)…
In the second case, the condition is checked AFTER the loop (so the loop will be
executed at least once).

HANDS
ON

Example.

You are going to write a program that allows the user to input a list of names, adding
each one to a list, until the name ‘XXX’ is input.

This is an important example of a ROGUE VALUE – a data value that tells the computer
that a sequence of data input has finished. The rogue value must be a value that would
not normally occur.

[1] Create a new application, and place a ListBox(lstNames) and a Button(btnNames)

as shown…

O:\Docs\VB Tutorial\VB Tutorial Year 12_Loops.doc

Visual Basic : Year 12 Tutorial Booklet

[2] Enter the Event handler for the Click event of the button btnNames as follows…

 Private Sub btnNames_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnNames.Click

 Dim Name As String

 'Make sure the List is empty
 lstNames.Items.Clear()

 'Enter the names
 Do While Name <> "XXX"
 Name = InputBox("Enter a name or XXX to finish.")
 If Name <> "XXX" Then lstNames.Items.Add(Name)
 Loop
 End Sub

Note that as many names can be input as necessary until the rogue value of
“XXX” is entered.

[3] Run the program and add names. Use the rogue value to end the program.

Summary

A Loop is a section of program code that is repeated a number of times.

If the number of iterations is known, use a FOR…NEXT loop.
If the loop is to be repeated until a condition is TRUE, use a DO…WHILE or DO…UNTIL loop.

A Rogue Value is an item of data that is used to indicate the end of a sequence of data.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Loops.doc

Visual Basic : Year 12 Tutorial Booklet

HANDS
ON

Visual Basic Challenges 4 (cont’d)

[3] Write a program that asks the user to enter a password.

The user can try entering as many passwords as they like, but only when the
password “FRED” is entered a message is displayed saying “WELCOME”.

RESEARCH
NEEDED

[4] Write a program that allows the user to enter a sequence of names. Only those

names beginning with the letter ‘G’ are added to a list. Use a suitable rogue value
to end the
program.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Loops.doc

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Year 12 : Visual Basic Tutorial.

Counts, Totals and Averages.

An algorithm is a sequence of steps needed to complete a task.

One way of writing down an algorithm is by using pseudo-code. It’s like a computer
program but written in English. It must, however, display the structure of the program.

Example :

A sequence of exam marks is input, terminated by a rogue value. The number of exam
marks greater than 50 needs to be output.

This is an example of a Counting program. To count, we need to declare an integer
variable to do the counting, but we must make sure it is initialised to 0.

The pseudo-code algorithm for this is as follows :

 counter = 0
 repeat
 input(mark)
 if mark > 50 then

increment counter
end if

until the end of the data

HANDS
ON

output(counter)

Visual Basic Challenges 5

[1] Write a program for the example above, which inputs a sequence of exam marks,

terminated by a suitable rogue value. The program counts the number of exam
marks greater than 50.

 Try inputting these marks :
 65, 32, 41, 75, 88, 90. 27

 The output should be “There are 4 marks greater than 50”

HINT :

To increment a variable means to add 1 to its value.

To add 1 to a variable called ‘Counter’ use this code…

 Counter = Counter + 1

(…this means that ‘the new value of Counter is the old value plus 1.)

O:\Docs\VB Tutorial\VB Tutorial Year 12_Counts.doc

STUDY
THIS

Visual Basic : Year 12 Tutorial Booklet

Example :

A sequence of prices is input. The total amount of the bill is to be output.

To code this, you need a variable for the Total.

The pseudo-code algorithm for this would be :

 set the Total to 0
 repeat
 input(Price)
 Add Price to Total
 until the end of the data
 output(Total)

HANDS
ON

Visual Basic Challenges 5 (cont’d)

[2] Write a program for the example above, that calculates a total bill for any

number of input prices.

Test data :

[a] Prices £10.20, £3.50, £2.10
 Total is £15.80

[b] Prices £0.20, £0.75, £1.90, £2.30
 Total is £5.15

HINT :

To add the value of one variable (‘Fred’) to the value of another variable
(‘Jim’)….

 Jim = Jim + Fred

CAREFUL : It is important to understand that it is the value of ‘Jim’ that is
changing here. ‘Fred’ remains unchanged.

[3] A pupil wants to input all his exam marks and output the average exam mark. Can

you write a suitable program for this?

 (You will need to have a Count and a Total.)

 Test Data :
 Exam Marks : 78, 52, 80, 63, 49, 71.

Average is 65.5

O:\Docs\VB Tutorial\VB Tutorial Year 12_Counts.doc

STUDY
THIS

Year 12 : Visual Basic Tutorial.

Debugging.

A problem in a computer program is called a bug. The process of getting rid of bugs is
called debugging….so what do you do if your program does not work?

There are three different types of error that may occur…

[1] Syntax Error
 This is when the programmer (you!) breaks the rules of the syntax of the

language. For example, you may spell an instruction or property incorrectly…

Example : txtMessage.Txet instead of txtMessage.Text

 Syntax errors are usually picked up by the compiler before the program is run.

[2] Logical Error
 The program runs fine…but gives the wrong results.

 Example : The program may add a discount amount instead of subtracting it.

[3] Run-time Error
 The program compiles fine, but an error occurs when the program is run.

Example : The program may try to open a file of data that is not in the expected
place.

 Another example : trying to divide a number by 0 may cause a run-time error.

Finding Errors

To fix your errors, you first have to find them.

Syntax errors in VB are usually shown by a blue squiggly line. Hover your mouse cursor
over the error and a helpful diagnostic error message should be displayed….

For beginners, some of these error messages take some getting used to! – but they
should at least give you a clue about what the error is.

Logical errors can be much harder to track down…

O:\Docs\VB Tutorial\VB Tutorial Year 12_Debugging.doc

There will also be an entry in the ‘Error List’ box if it is displayed at the bottom of the
screen.

If you double-click on the error, it will take you to where it is. This is useful in a long
program.

Breakpoints

If a program is not working it is possible to stop the program running at a specified line
of code. To do this you need to insert a Breakpoint.

Click on the grey border on the left edge of the line where you want the program to stop
running. A Red marker will appear and the line of code will be highlighted in red. (To
remove the breakpoint – click it again)

Run the program and execution will stop at this line. The line is highlighted in yellow and
an arrow placed in the margin to show the line at which the program stopped.

You can now do one of two things…

 [1] Check the values of variables or object properties.

[2] Single-step through the program, running one line at a time.

Checking Values of Variables or Object properties

When the program execution stops at a breakpoint, you can place the mouse cursor over
a variable, and the value will be displayed…

Is it the value you expected it to be? If not, it may give you a clue as to what the
problem is…

O:\Docs\VB Tutorial\VB Tutorial Year 12_Debugging.doc

You could also add a Watch. (Use the Debug window). This would list the values of all the
properties of an object…
Click on the ‘Add Watch’ button to display this in the Watches window at the bottom of
the screen.

You can also add expressions (such as txtMessage.Text = “Tom”) to the Watch
window…to see if they are TRUE or FALSE.

You can add as many watches as you need.

Single-stepping

Use the Step Into button to execute the next program statement. (The line
highlighted in yellow is the NEXT line to be executed.)

Keep an eye on the values of your watches as each line is executed and it should give you
a clue about what the problem is.

HINTS : If your program is not working…

1. Place a breakpoint at the start of the section.
2. Add Watches to look at values of object properties.
3. Single-step through the program – keeping an eye on your

watches.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Debugging.doc

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Year 12 : Visual Basic Tutorial.

Simple Error Trapping.

Programs should never crash!

The best way to deal with run-time errors is to trap them with an error handler. This is
a sections of code that handle these errors when they occur.

Run-time errors are referred to as Exceptions.

An error handler uses the Try…Catch…Finally code block.

HANDS
ON

This is what you do…

[1] Create a new Windows Application.

On the form place a PictureBox (picPhoto) and set the Image property to an
existing graphic and a Button (btnChange).

 The program is going to change the picture when the button is pressed.

[2] Add this event handler to the Click event of the button.

(You will need to put the full path of a valid picture into the red text)

Private Sub btnChange_Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles btnChange.Click
 picPhoto.Image = System.Drawing.Bitmap.FromFile("R:\homer.gif")
End Sub

Run the program and see if the picture changes…(fix it if it doesn’t!)

O:\Docs\VB Tutorial\VB Tutorial Year 12_ErrorTrapping.doc

Visual Basic : Year 12 Tutorial Booklet

[3] Now, suppose the path of the picture is not correct…

 Change the path to a picture file that does NOT exist…

 Private Sub btnChange_Click(ByVal sender As Object, ByVal e As

System.EventArgs) Handles btnChange.Click
 picPhoto.Image = System.Drawing.Bitmap.FromFile("R:\marge.gif")
End Sub

…and run the program. This time you will get a run-time error, and a box like this
will point to the line where the error was found:

[4] Change the code of the event handler to this…

Private Sub btnChange_Click(ByVal sender As Object, ByVal e As
System.EventArgs) Handles btnChange.Click
 Try
 picPhoto.Image = System.Drawing.Bitmap.FromFile("R:\marge.gif")
 Catch ex As Exception
 MsgBox("That file does not exist")
 End Try
End Sub

Running the program now, an error message should pop up…

O:\Docs\VB Tutorial\VB Tutorial Year 12_ErrorTrapping.doc

Visual Basic : Year 12 Tutorial Booklet

Year 12 : Visual Basic Tutorial.

String Handling.

Strings can be added together. This is called string concatenation.

Example :

This message box would output “Hello Danny Thomas”

Strings can be compared alphabetically so …
 “A” < “B” is TRUE
 “Martin” < “Paul” is TRUE
 “Apple” > “Ball” is FALSE

The table below shows a list of string methods with explanations and examples:

Method Explanation Example
Length The number of characters

in a string.
If Name = “John”
then Length(Name) is 4

ToUpper Changes letters to upper
case

If Name = “John”
then Name.ToUpper is “JOHN”

ToLower Changes letters to lower
case

If Name = “John”
then Name.ToLower is “john”

Substring Returns a string from
inside another. The
starting point and number
of characters is given.

If Name = “Thomas Jones”
then Name.Substring(3,2) is “ma”

Trim Removes spaces from
start and end of a string.

If Name = “ Tom Jones “
then Name.Trim is “Tom Jones”

IndexOf Returns the starting
position of one string
inside another.

If Name = “Tom@Jones”
then Name.IndexOf(“@”) is 3

Insert Adds a string into the
middle of another. The
start point and the string
must be given.

If Name = “Tom Jones”
then Name.Insert(4,”Bart”) is “Tom Bart
Jones”

Remove Deletes characters from a
string. The start point and
the number of characters
to be deleted is given.

If Name = “Tom Bart Jones”
then Name.Remove(4,5) is “Tom Jones”

Dim Surname, Forename As String

Surname = "Thomas"
Forename = "Danny"
MsgBox("Hello " & Forename & " " & Surname)

STUDY
THIS

O:\Docs\VB Tutorial\VB Tutorial Year 12_StringHandling.doc

Visual Basic : Year 12 Tutorial Booklet

HANDS
ON

Visual Basic Challenges 6

[1] Create an application that allows the user to enter a sequence of names ending

with a rogue value of “XXX”.

The program should sort the names into two lists. One with all the names that
start with letters “A” to “L”, and the other list with the remaining names.

Can you keep the lists sorted in alphabetical order even though the names are
not entered that way?

Make sure your program exits properly when “XXX” is entered, and outputs a
message saying how many names are in each list.

O:\Docs\VB Tutorial\VB Tutorial Year 12_StringHandling.doc

Visual Basic : Year 12 Tutorial Booklet

[2] The email address of employees in a company called BizzyBee Ltd is made from
the first two letters of their first name, their surname and the department they
work in.

 For example, Mary Smith in the Accounts department has an email address:
 ma.smith@accounts.bizzybee.com

 James Davies in the Sales department has an email address:
 ja.davies@sales.bizzybee.com

Write a program that allows an employee to enter their full name and the
department they work for (Sales, Accounts, or Maintenance) and outputs their
email address.

[3] An online music and computer games company, codes each item it sells with a

unique 6-character code. The first two characters must be either CD (for Cds)
or DV (for DVDs). The remaining 4 characters must be numerical digits.

 Valid codes : CD56321 DV6700 CD0018

Invalid codes : CD431 DW7891 DV567G

Write a program that inputs a code and fully validates it. If an incorrect code is
found then the user must enter another code. When a valid code is entered, the
program ends.

O:\Docs\VB Tutorial\VB Tutorial Year 12_StringHandling.doc

mailto:ma.smith@accounts.bizzybee.com
mailto:ja.davies@sales.bizzybee.com

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Year 12 : Visual Basic Tutorial.

Arrays.

An array is a list of data items.

All the data items must be of the same data type.

Arrays must be declared before you use them….

Example :

Dim PartyList(3) of String

This would declare an array of 4 strings called PartyList. Each string in the array is
identified by a subscript. The subscripts in this example go from 0 to 3...

Refer to each string as PartyList(0), PartyList(1), PartyList(2) and PartyList(3).

If you want the subscripts to start from a number other than 0, then declare the first
and last subscript…

Dim PartyList(1 to 5) of String

…would allow the 5 strings PartyList(1), PartyList(2),…, PartyList(5)

For global arrays use the declaration…

 Public PartyList(1 to 5) of String

HANDS
ON

[1] Create a new Windows Application. You are going to create a program that allows

a computer salesman to enter the value of sales for each day of the week, and
output the value on the best day.

Place a Button (btnEnter) and Listbox (lstTemps) on the form.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Arrays.doc

Visual Basic : Year 12 Tutorial Booklet

[2] Enter the array declaration…(directly after the Public Class Form1 declaration)
 Public Class Form1

 Dim Sales(4) As Single

This is placed here so that we can use the array in any of the subroutines in the
form.

[3] On the Click event of the Button, enter the following event handler…

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnEnter.Click
 Dim i As Integer
 Dim SaleData As Single

 For i = 0 To 4
 'Enter Sales data
 SaleData = InputBox("Please enter Sales data for Day " &
(i + 1), "Sales Entry Form")
 Sales(i) = SaleData

 'Add Data to ListBox
 lstSales.Items.Add("Day " & (i + 1) & " : £" & Sales(i))
 Next
End Sub

 Note that the subscripts for the array are 0 to 4, but the user sees them in the

display as 1 to 5.

 Run the program and you should be able to enter five sales amounts:

[4] The currency amounts in the ListBox do not show the pence to 2 decimal places.

To format the numbers, use the FormatCurrency method…

'Add Data to ListBox
lstSales.Items.Add("Day " & i + 1 & " : " & FormatCurrency(Sales(i), 2))

O:\Docs\VB Tutorial\VB Tutorial Year 12_Arrays.doc

Visual Basic : Year 12 Tutorial Booklet

 Run the program again and enter five sales amounts…

[5] To find the largest sales amount of the week, we need to another Button

(btnCalculate), a TextBox (txtBest) and a Label.

 On the Click event of btnCalculate…

Private Sub btnCalculate_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnCalculate.Click
 Dim i As Integer
 Dim Largest As Single

 'Initialise to 0
 Largest = 0

 'Check each sales amount for largest so far
 For i = 0 To 4
 If Sales(i) > Largest Then
 Largest = Sales(i)
 End If
 Next

 'Display largest sales amount
 txtBest.Text = FormatCurrency(Largest, 2)

End Sub

O:\Docs\VB Tutorial\VB Tutorial Year 12_Arrays.doc

Visual Basic : Year 12 Tutorial Booklet

 This is the standard algorithm for finding the largest number in an array. The
variable ‘Largest’ stores the largest so far…as each number is checked in turn.

[5] Run the program and enter five sales amounts…

[6] Run several test runs.

 Save the Application – you need it in the next set of Challenges.

An Array is a really useful data structure that has a number of built-in methods
already.

For example, you can sort an array into order…

Array.Sort(Sales)

Other methods you may wish to investigate include Array.Find, Array.Reverse,
Array. Copy and Array.Clear

Visual Basic Challenges 7

[1] Extend the previous application to produce a sorted list of the Sales amounts as

shown below…

O:\Docs\VB Tutorial\VB Tutorial Year 12_Arrays.doc

Visual Basic : Year 12 Tutorial Booklet

[2] Write a program that stores an array of 5 items and an array that stores their 5

prices. Use the code below in the Form1_Load event for setting up the arrays of
data.

 Item(0) = "T-Shirt"
 Item(1) = "Pencil case"
 Item(2) = "Ruler"
 Item(3) = "Paper weight"
 Item(4) = "Folder"

 Price(0) = 7.99
 Price(1) = 2.2
 Price(2) = 1
 Price(3) = 3.99
 Price(4) = 0.4

The user should be able to enter the name of an item, and your program should
display its price.

If the user enters “Pencil case”, the price displayed should be £2.30

[3] Extend the exercise [2] to allow the user to calculate the bill for the purchase

of a number of one of these items, allowing 5% discount.

 Test data : 5 Pencil cases should cost £10.45

[4] Set up a password entry program that allows the user to enter a name and a

password. If the name matches the password then a ‘Welcome’ message is
displayed.

The user is allowed three attempts before the
program ends.

HINTS :

Use two arrays – one for the names and the other for the passwords.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Arrays.doc

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Year 12 : Visual Basic Tutorial.

Forms.

Most applications have more than one form. Make sure you call them meaningful names
(not Form1, Form2 etc!!!). Each form is saved as a different file on disc.

Each form has its own objects, properties, methods and event handlers.

To add a new form to a project…
In the [Project] menu – Add Windows Form…Select Windows Form…

…and change the name of the form to something meaningful.

The new form should appear in the Project Explorer window of your project

My

There is a special object called My. This object allows you to access the forms,
computer and application of your project easily.

To open a form (called MyForm) in a subroutine, use…

 My.Forms.MyForm.Show()

and to close a form….

My.Forms.MyForm.Hide()

O:\Docs\VB Tutorial\VB Tutorial Year 12_Forms.doc

Visual Basic : Year 12 Tutorial Booklet

…but you need to be careful!! A form cannot refer to itself…you need to use…

Me

The Me object refers to the currently active form. So if you have a form with a button
on it, and you want to close the form when the button is clicked you need to use…

Me.Hide()

HANDS
ON

[1] Create a new Windows application.

 Add a Button (btnHelp)

[2] Add another Form to the application and name it frmHelp.

 On this form, place a Button (btnReturn).

[3] On the Click event of btnHelp enter the code…

 Private Sub btnHelp_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles btnHelp.Click
 My.Forms.frmHelp.Show()
 End Sub

[4] On the Click event of btnReturn enter the code…

Private Sub btnReturn_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles btnReturn.Click
 Me.Hide()
End Sub

[5] Run the form and you should be able to open the new form …and then close it.

HINT :

You can set the StartPosition property of a form to CenterScreen to place it
in the middle of the screen when it is first opened.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Forms.doc

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Dialog Boxes

There are some special forms already created for you. A form that collects information
from the user is called a Dialog Box.

An example of a Dialog Box is the ColorDialog object that allows the user to select a
colour from a palette. The dialog box has its own properties that the programmer can
set and then it is opened using the ShowDialog method. We will use this one in the next
example.

Other Dialog Boxes available are:

• OpenFileDialog – for opening files
• SaveFileDialog – for saving files
• FontDialog – for setting font properties
• FolderBrowserDialog – for navigating through a disc’s hierarchical folder

structure.
• PrintDialog – Sets printing options
• PrintPreviewDialog – displays a print preview
• PageSetupDialog – for setting the propertuis of a page.

HANDS
ON

[1] Create a new Windows Application

Add a Button (btnColour; Text = ‘Set Font Colour’) , and a Label (lblMessage;
Text = “Test Message”)

Also drag a ColorDialog object from the Toolbox onto the form. It should appear
in the space below with the name ColorDialog1

[2] On the Click event handler of the button, enter the following code:

Private Sub btnColour_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnColour.Click
 ColorDialog1.ShowDialog()
End Sub

 This code should open the Colour Dialog box.

Run the program and you should see the standard Windows colour selection
dialog box.…

O:\Docs\VB Tutorial\VB Tutorial Year 12_Forms.doc

Visual Basic : Year 12 Tutorial Booklet

[3] There is one more line needed in the code – one that sets the colour of the font

of the label to the colour selected in the dialog box.…

Private Sub btnColour_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnColour.Click
 ColorDialog1.ShowDialog()
 lblMessage.ForeColor = ColorDialog1.Color
End Sub

 Run the program now, and you should be able to set the label’s font colour…

O:\Docs\VB Tutorial\VB Tutorial Year 12_Forms.doc

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Year 12 : Visual Basic Tutorial.

Subroutines.

A subroutine is a small program that performs a specific task. It can be ‘called’ from
anywhere in a larger program. When the subroutine has been run, program execution
returns to the larger program.

There are two main types of subroutine:

Procedures – that perform a specific task.

Functions – perform a task and return a value. Functions are frequently used for
calculating something.

You have already met procedures because the event handlers are examples of
procedures… but you can make your own. You are encouraged to do this because it
creates a better structure to your program.

Bad programs have lots of repeated code. Good programs have lots of subroutines.

HANDS
ON

[1] Create a new Windows Application.

On your form place a TextBox (TextBox1) and a Buttons (btnChange).
Arrange them like this…

You are going to write a program using procedures, that toggles the colour
schemes between two different schemes.

[2] You will need a variable to keep track of the current colour scheme, so make this

declaration immediately after the Public Class Form1 line…

 Dim CurrentScheme As Integer = 1

Remember this means that we can use this variable in any subroutine on this
form (Class).

It is initialised to the value 1 when the program is run.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Subroutines.doc

Visual Basic : Year 12 Tutorial Booklet

[3] The program consists of two subroutines (procedures). They are called
SetColourScheme1 and SetColourScheme2. They are both called from the event
handler btnChange_Click.

 Type in the rest of the program as you see it here:

Public Class Form1

 Dim CurrentScheme As Integer = 1

 Private Sub SetColourScheme1()
 Me.BackColor = Color.Blue
 TextBox1.BackColor = Color.White
 TextBox1.ForeColor = Color.Blue
 btnChange.BackColor = Color.White
 btnChange.ForeColor = Color.Blue
 CurrentScheme = 1
 End Sub

 Private Sub SetColourScheme2()
 Me.BackColor = Color.White
 TextBox1.BackColor = Color.Blue
 TextBox1.ForeColor = Color.White
 btnChange.BackColor = Color.Blue
 btnChange.ForeColor = Color.White
 CurrentScheme = 2
 End Sub

 Private Sub btnChange_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnChange.Click
 If CurrentScheme = 1 Then
 SetColourScheme2()
 Else
 SetColourScheme1()
 End If
 End Sub
End Class

[4] Run the program, and enter text in the text box before pressing the button to

change the colours.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Subroutines.doc

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Functions

Functions are procedures that return a value – in other words they work something out
and assign the answer to the function name.

A function must have two things…

 [1] a declared type for the returned value

[2] an assignment to the function name (saying what the value of the
function is).

This example is a function that works out the largest of two numbers entered into two
text boxes (txtFirst and txtSecond).

 Private Function Largest() As Integer
 If txtFirst.Text > txtSecond.Text Then
 Largest = txtFirst.Text
 Else
 Largest = txtSecond.Text
 End If
 End Function

The function is called inside an event handler by name and then, for example assigning it
to a variable of the correct type…

Dim BestMark As Integer

BestMark = Largest()

…or assigned to the property of an object…

txtBestMark.Text = Largest()

HANDS
ON

Visual Basic Challenges 8.

[1] Use the function above to create

a program that allows the user to
enter two exam marks and displays
which of the two is the highest mark.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Subroutines.doc

Visual Basic : Year 12 Tutorial Booklet

Parameters

Subroutines only really become useful when we pass parameters to them.

A parameter is a value that is passed to the subroutine. When the subroutine is
executed, it will use this value.

HANDS
ON

Example : A procedure that draws a line of Xs in a TextBox…

[1] Create a new Windows application.

Add two Labels, two TextBoxes(txtFirst and txtSecond) and a Button (btnAdd).
Also add RichTextBox(rtbAdd)…

[2] On the Click event of button btnAdd add the event handler…

Private Sub btnCalculate_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnCalculate.Click

Dim Answer As Double
 Answer = Val(txtFirst.Text) + Val(txtSecond.Text)

 'Display calculation in TextBox
 rtbAdd.Clear()
 rtbAdd.AppendText(txtFirst.Text)
 rtbAdd.AppendText(vbCrLf) 'takes a new line
 rtbAdd.AppendText(txtSecond.Text)
 rtbAdd.AppendText(vbCrLf)
 rtbAdd.AppendText("----------") '10 dashes
 rtbAdd.AppendText(vbCrLf)
 rtbAdd.AppendText(Answer)
 rtbAdd.AppendText(vbCrLf)
 rtbAdd.AppendText("----------")
 rtbAdd.AppendText(vbCrLf)
End Sub

There are two lines that are repeated here for drawing the line of dashes – this
is never a good thing and you should avoid repeated code in programming.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Subroutines.doc

Visual Basic : Year 12 Tutorial Booklet

[3] Run the program and enter two numbers. The addition calculation should be
displayed.

[4] To avoid repeated code … create your own subroutine…Change your code to the

following:

 Private Sub DrawLine()
 rtbAdd.AppendText("----------")
 rtbAdd.AppendText(vbCrLf)
 End Sub

Private Sub btnCalculate_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnCalculate.Click

 Dim Answer As Double
 Answer = Val(txtFirst.Text) + Val(txtSecond.Text)

 'Display calculation in TextBox
 rtbAdd.Clear()
 rtbAdd.AppendText(txtFirst.Text)
 rtbAdd.AppendText(vbCrLf) 'takes a new line
 rtbAdd.AppendText(txtSecond.Text)
 rtbAdd.AppendText(vbCrLf)
 DrawLine()
 rtbAdd.AppendText(Answer)
 rtbAdd.AppendText(vbCrLf)
 DrawLine()
 End Sub

Note that your procedure is called DrawLine and is called twice by the event
handler.

[5] Now for some improvements….

 First, it is better to use a loop in the DrawLine procedure, so change it to…

 Private Sub DrawLine()
 Dim i As Integer
 For i = 1 To 10
 rtbAdd.AppendText("-")
 Next i
 rtbAdd.AppendText(vbCrLf)
 End Sub

O:\Docs\VB Tutorial\VB Tutorial Year 12_Subroutines.doc

Visual Basic : Year 12 Tutorial Booklet

[6] The procedure is fine for drawing lines of 10 dashes…but maybe sometimes we
would like lines of 20 dashes, …or 25 dashes etc…

 To make the procedure more useful we pass a parameter to it….

 Private Sub DrawLine(ByVal NumDashes As Integer)

 Dim i As Integer
 For i = 1 To NumDashes
 rtbAdd.AppendText("-")
 Next i
 rtbAdd.AppendText(vbCrLf)
 End Sub

 NumDashes is the parameter. It is declared in the heading of the procedure-

the data type of the parameter must also be declared.

In the event handler you will need to pass a value for the parameter – this must
match the data type (integer in this case)…so change the lines that call the
procedure to…

 ……… DrawLine(30)

………
 DrawLine(25)

 Running the program now should result in a display similar to this…

Summary

A subroutine is a small section of program code that can be called from other parts of
a program. There are two types:

Procedure – that performs a specific task
Function – that performs a task and returns a value.

Parameters are passed to subroutines to make them useful.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Subroutines.doc

Visual Basic : Year 12 Tutorial Booklet

Visual Basic Challenges 8

[2] Enhance the above program so that you can pass two parameters to the DrawLine

procedure –
• the number of characters to be drawn
• the character to use

So the instruction DrawLine(12,”@”) would produce “@@@@@@@@@@@@”

Test your program by seeing if you can reproduce this screen display…

[3] (a) Write a new application that allows the user to input a string and encodes it

by taking the ‘next’ character in the alphabet for each letter.

 Include a function in your application that encrypts a string.

 Test data : Input – APPLE Output – BQQMF

(b) Add a new section that decrypts a coded string.

Test Data : Input – BQQMF Output – APPLE

O:\Docs\VB Tutorial\VB Tutorial Year 12_Subroutines.doc

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Modules.

A module is a library of subroutines that can be used in other programs. It is a really
good idea to use modules because…

• it saves time programming if you can use subroutines you have created in other
programs

• you know they will work because they have already been tested.

Any subroutine in a module can be called from anywhere in your program.

Global variables and constants can be declared in a module and used anywhere in the
program.

Using constants is also a good idea because if their value changes, then you only have to
change the value once in the module, and not in all the places the value is used in the
program.

To add a module to a program click the [Project] menu and the [Add New Item…] option.
Make sure you select the [Module] option…

The Module should appear in your Solution Explorer window.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Subroutines.doc

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Year 12 : Visual Basic Tutorial.

Files.

A file is a place for storing data that you do not want to lose when the power of your
computer is switched off.

There are two main types of file…

1) Serial file – data is appended onto the end of the file.
2) Random Access file – data is stored in the file at a place calculated from

the data.

In applications where data is needed to be accessed quickly then you need a Random
Access file.

In a Random Access File of data, a calculation (hashing algorithm) is performed on the
key field, resulting in an address (hash address) where the data is stored in the file.

Sometimes a Random Access File is called a Direct Access File. This is specifically
designed to confuse you!

HANDS
ON

Text Files

You are going to write a program that allows text to be input and then saved into a file.
Later, you will write a program that loads it back.

[1] Create a new Windows application.

 On your form place a TextBox (txtData) and a Button (btnSave).

 Set the following properties for the txtData…

Property Value
MultiLine True

O:\Docs\VB Tutorial\VB Tutorial Year 12_Files.doc

Visual Basic : Year 12 Tutorial Booklet

[2] To save the work, you will use a SaveFileDialog control, so drag one from the
Toolbox onto your project. It will appear at the bottom of the screen.

 Enter the subroutine below into the Click event handler of the btnSave.

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Button1.Click
 'Set the Dialog box to only display Text files
 SaveFileDialog1.Filter = "Text files (*.txt)|*.txt"

 'Open the Dialog box
 SaveFileDialog1.ShowDialog()

 'Check that a filename has been entered
 If SaveFileDialog1.FileName <> "" Then
 'Write the text to the file
 My.Computer.FileSystem.WriteAllText(SaveFileDialog1.FileName, txtData.Text, False)

 End If
End Sub

NB : There is a Boolean parameter in the WriteAllText command…This will be
True if you want to append the text onto the end of the file…or False, if you
want to overwrite any existing text in the file.

[3] Run, the program, enter some text into the TextBox and click on the Save

button. Enter a filename in the SaveFileDialog, and click on OK.

 Your text should now be saved in a text file. (Check it by opening with Notepad.)

[4] Now let’s try to get it back!

 Stop the program running and add a new Button (btnLoad) to your form.

 You will also need to drag an OpenFileDialog control into your project.

 This should appear at the bottom of your screen with the name OpenFileDialog1.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Files.doc

Visual Basic : Year 12 Tutorial Booklet

[5] On the Click event handler of btnLoad…

Private Sub btnLoad_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnLoad.Click

 'Set the Dialog filter to display only text files
 OpenFileDialog1.Filter = "Text files (*.txt)|*.txt"

 'Open the Dialog
 OpenFileDialog1.ShowDialog()

 If OpenFileDialog1.FileName <> "" Then

 'FileOpen(1, OpenFileDialog1.FileName, OpenMode.Input)
 txtData.Text = My.Computer.FileSystem.ReadAllText(OpenFileDialog1.FileName)

 End If

End Sub

 Run the program and see if you can load the text back.

HANDS
ON

Visual Basic Challenges 9

[1] The latest school trip is going to Paris to see the Eiffel

Tower and to practice their French.

Write an application that allows pupils to enter their
names, one at a time.

 The whole list of names should be printed at the end.

[2] Write an application that allows the user to enter a paragraph of text and store

it in a file.

The text file can then be loaded in a coded version where all the vowels are
removed from the text.

Test data : If the Text “Sing a song of sixpence is entered”, then when it is
loaded back, the text “Sng sng f sxpnc” is displayed.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Files.doc

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Random Access Files

To illustrate Random Access Files, you are going to create a file of records for the
members of a school drama society.

Each record will have 4 fields in :

 Fieldname Data type

ID Integer (Key field)
Name String
Form String
Actor Boolean

The records will be stored in a random access file. The ID numbers will start at 1000,
and the hashing algorithm will find the address of each record by subtracting 1000. For
example, the record with ID 1004 will be stored as record number 4.

HANDS
ON

[1] Create a new Windows application.

Records are called Structures in Visual Basic, and the first thing you need to do
is define the record structure. Do this in a Module.

Structure MemberRecord

 Dim ID As Integer
 Dim Name As String
 Dim Form As String
 Dim Actor As Boolean

End Structure

[2] On your Form, add three TextBoxes (txtID, txtName, txtForm), a CheckBox
(chkActor), and a Button (btnSave)…and anything else to make the display look
appealing…

O:\Docs\VB Tutorial\VB Tutorial Year 12_Files.doc

Visual Basic : Year 12 Tutorial Booklet

[3] Here is one of the member records to be entered :

ID Name Form Actor
1004 Tom Jones 12G True

The program will look at the ID number (1004) and store this record as record
number 4.

When creating a Random Access File, you need to :

• Assign values to the fields of a record
• Open a file for random access
• Calculate the hash address of the record
• Save the record at that hash address
• Close the file

The event handler for the Click event of btnSave is here :

Private Sub btnSave_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnSave.Click
 'Declare a record
 Dim Member As MemberRecord

 'Allocate values to fields in the record
 Member.ID = txtID.Text
 Member.Name = txtName.Text
 Member.Form = txtForm.Text
 Member.Actor = chkActor.Checked

 'Allocate a file number - (let the computer do it!)
 Dim FileNum As Integer
 FileNum = FreeFile()

 'Open the file for Random Access - Change the file path if needed
 FileOpen(FileNum, "H:\My Documents\DramaFile.dat", OpenMode.Random)

 'Calculate the hash address of the record
 Dim RecNum As Integer
 RecNum = Member.ID - 1000

 'Write the record to the file
 FilePut(FileNum, Member, RecNum)

 'Close the file
 FileClose(FileNum)

 'Clear the TextBoxes
 txtID.Text = ""
 txtName.Text = ""
 txtForm.Text = ""
 chkActor.Checked = False

End Sub

Run the program and enter the record shown.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Files.doc

Visual Basic : Year 12 Tutorial Booklet

(If you open the file Dramafile.dat in Windows Notepad, you should see the data
– only the text will be recognisable amongst other garbage!)

 [3] Use your program to add these records to your file :

ID Name Form Actor
1002 Alice Springs 11C True
1004 Tom Jones 12G True
1005 Jack Flash 12B False
1007 Rhian Lord 11B True
1008 Elvis May 12G False

[4] Now you will try to retrieve the data…You are going to add a new form to your

application and search for a particular record.

 Add a new Windows Form to your application and name it frmSearch.

 On this form, place 3 TextBoxes (txtID, txtName, txtForm), a Button

(btnSearch) , a CheckBox (chkActor) and 4 Labels…

 Save this form and add a Button (btnSearchForm) to the original form, and add

the event handler.

Private Sub btnSearchForm_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnSearchForm.Click
 frmSearch.Show()
End Sub

 It would be a good idea to run the program and check that you can open the

Search Form. It does nothing yet - but you are going to be able to enter an ID
number, click the Search button and find and display the appropriate record.

O:\Docs\VB Tutorial\VB Tutorial Year 12_Files.doc

Visual Basic : Year 12 Tutorial Booklet

On frmSearch, add this event handler to the Click event of btnSearch…

Private Sub btnSearch_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnSearch.Click

 'Declare a record
 Dim Member As MemberRecord

 'Allocate a file number - (let the computer do it!)
 Dim FileNum As Integer
 FileNum = FreeFile()

 'Open the file for Random Access - Change the file path if needed
 FileOpen(FileNum, "H:\My Documents\DramaFile.dat", OpenMode.Random)

 'Calculate the hash address of the record to be read
 Dim RecNum As Integer
 RecNum = txtID.Text - 1000

 'Read the record from the file
 FileGet(FileNum, Member, RecNum)

 'Display the fields in the TextBoxes
 txtID.Text = Member.ID
 txtName.Text = Member.Name
 txtForm.Text = Member.Form
 chkActor.Checked = Member.Actor

 'Close the file
 FileClose(FileNum)

End Sub

[5] Run the program and enter an ID number…Click the search button and you should

see the fields of the record displayed.

Save the application – you will need it in the Challenge exercises….

O:\Docs\VB Tutorial\VB Tutorial Year 12_Files.doc

Visual Basic : Year 12 Tutorial Booklet

Visual Basic Challenges 9

[3] Add a new form to the Drama Club application, that displays the names of all the

members in a ListBox.

HINT : Use a loop to read each record. You can test when you get to the end of
a file by using …and be careful you don’t try to display the blank records.

While Not EOF(FileNum)
 …

…
End While

RESEARCH
NEEDED

[4] For the brave!!…

One of the most useful objects in Visual Basic is the DataGridView.

See if you can display the Drama Club members on a DataGridView…

O:\Docs\VB Tutorial\VB Tutorial Year 12_Files.doc

Visual Basic : Year 12 Tutorial Booklet

Year 12 : Visual Basic Tutorial.

ADO – Linking to Microsoft Access Databases.

IMPORTANT :
You will use a database called hospital.mdb for the walkthroughs and exercises
presented here. The path to this database will always be C:\hospital.mdb in these notes
– You will have to change this to the path of the database on your computer, whenever it
occurs.

HANDS
ON

There are two ways to link to a database in VB –

[A] The Easy Way (faster but not so versatile) or

[B] by writing Program Code.

We’ll stick to the Easy Way for now….

[1] Create a new Windows application.

[2] In the Data menu, click the Add New Data Source command. The Data Source

Configuration wizard should appear…

 Select Database and click <Next>

You now need to set up the connection to your database.

Click on the [New Connection] button.

O:\Docs\VB Tutorial\VB Tutorial Year 12_ADO.doc

Visual Basic : Year 12 Tutorial Booklet

Make sure the dialog box is set to the above options (the path to your database
will probably be different – use the Browse button to find your database)

 Test the connection before moving on by clicking [OK].

The details of the connection should now be filled in (Click the [+] to see the
connection string.)

 Click the <Next> button.

O:\Docs\VB Tutorial\VB Tutorial Year 12_ADO.doc

Visual Basic : Year 12 Tutorial Booklet

You will see a message displayed asking whether you want to make a copy of the
database into your project. There is no need to do this so select [No].

You will now be asked if you want to save the Connection string..and [Yes] – you
do! (If the location of your database changes then you only need to edit the
string in the configuration file of your Solution explorer)

You now create the dataset to be used in your application. A dataset is a copy of
some or all of the fields in the tables of your database.

 Select all the tables (as shown above).

 Click [Finish]

[3] You should now see an extra element appear in the Solution Explorer.

There is now hospitalDataSet.xsd.

If you right-click hospitalDataSet.xsd and view the Designer you should see a
visual representation of the schema of the database.

O:\Docs\VB Tutorial\VB Tutorial Year 12_ADO.doc

Visual Basic : Year 12 Tutorial Booklet

[4] You will now write an application that displays some of this data.

 Find your Data Sources window. The tables and fields of your dataset should be

displayed. Expand the Patients table…

 Drag each of the four fields of the Patients table onto the Form. Labels and

TextBoxes should be created for each.

 A Navigation Bar is also created at the top of the form, as well as these object

displayed at the bottom of the screen…

 A TableAdapter moves data between the database and the DataSet.

 A BindingSource makes sure objects display data from the DataSet.

O:\Docs\VB Tutorial\VB Tutorial Year 12_ADO.doc

Visual Basic : Year 12 Tutorial Booklet

[5] Run the program and you should be able to see data from the Patients Table..

Using the Navigator Bar you can look at each of the records in the table,
navigate to the First, Last, Next or Previous record.

You can also Add new patients to the table and save the data, or delete records
(careful!).

 Save this project – you will need it in the next chapter.

O:\Docs\VB Tutorial\VB Tutorial Year 12_ADO.doc

Visual Basic : Year 12 Tutorial Booklet

STUDY
THIS

Year 12 : Visual Basic Tutorial.

ADO – Adding SQL statements.

SQL stands for Structured Query Language. It is a language used to select or update
data in a database.
You need to become familiar with the structure of SQL SELECT statements.

Here is an example :

SELECT PatientID, Surname, Forename FROM [Patients] WHERE Surname = ‘Jones’
ORDER BY Surname

This will filter out all the Patients with surname ‘Jones’, and sort the results in
alphabetical order of Surname.

..but don’t panic – there is a Query Builder wizard that will do this for you!

You will also look at a really useful object for displaying data – the DataGridView.

HANDS
ON

[1] Open the Hospital application from the previous chapter.

Delete all the Labels and TextBoxes… you are going to replace it with a
DataGridView.

From the Data Sources window, drag the Patients Table onto the form. A
DataGridView will appear, but you may need to adjust its size.

Run the program and all the data records should be displayed in a grid.

The DataGridView is a very powerful tool for displaying data and can be
formatted in many ways – worth having a good look at this for your coursework!

O:\Docs\VB Tutorial\VB Tutorial Year 12_ADO_2.doc

Visual Basic : Year 12 Tutorial Booklet

[2] Let’s filter the data now. Suppose we only wanted to view the Patients in Ward
W1, and we would like them displayed in alphabetical order of surname.

 In the Designer view, click on the DataGridView and then in the [Data] menu,

select [Add Query]. This dialog box should appear…

 The default Query for the Patients Table Adapter is displayed.

You could enter your SQL statement in the Query Text box, but let’s use the
Query Builder…

The data source table is displayed and should not be changed – we are displaying
data from the Patients table.

 In the Query builder…

• set the Sort Type for the [Surname] field to be ‘Ascending’,
• set the Filter for the [WardID] field to be ‘W1’

You will see the SQL text change automatically in the text box at the bottom.

O:\Docs\VB Tutorial\VB Tutorial Year 12_ADO_2.doc

Visual Basic : Year 12 Tutorial Booklet

Click [OK]. The SQL text will be automatically transferred.
You just need to give the new query a name – ‘Ward_1’

O:\Docs\VB Tutorial\VB Tutorial Year 12_ADO_2.doc

Visual Basic : Year 12 Tutorial Booklet

Make sure your screen looks like the one above ..and click [OK]

 VB will add a new Toolbar to your program with a Button on it for the Query.

[3] Run the program and click the button and you should see the Patients in Ward

W1 displayed in alphabetical order of surname.

Important Note : If you need to edit this query, go to the Dataset Designer, and
use the Configure option on the Query.

O:\Docs\VB Tutorial\VB Tutorial Year 12_ADO_2.doc

	VB Tutorial 12_Cover.pdf
	VB Tutorial Year 12_1_Intro.pdf
	VB Tutorial Year 12_2_Input_Output.pdf
	VB Tutorial Year 12_3_Events.pdf
	VB Tutorial Year 12_4_Identifiers.pdf
	VB Tutorial Year 12_5_Conditional.pdf
	VB Tutorial Year 12_6_Loops.pdf
	VB Tutorial Year 12_7_Counts.pdf
	VB Tutorial Year 12_8_Debugging.pdf
	VB Tutorial Year 12_9_ErrorTrapping.pdf
	VB Tutorial Year 12_10_StringHandling.pdf
	VB Tutorial Year 12_11_Arrays.pdf
	VB Tutorial Year 12_12_Forms.pdf
	VB Tutorial Year 12_13_Subroutines.pdf
	VB Tutorial Year 12_14_Files.pdf
	Visual Basic Challenges 9

	VB Tutorial Year 12_15_ADO.pdf
	VB Tutorial Year 12_16_ADO_2.pdf

