

Assessment of a Framework to Compare Software
Development Methodologies

Riaan Klopper

Department of Computer Science
University of Pretoria

Pretoria, South Africa, 0002

riaank@strate.co.za

Stefan Gruner
Department of Computer Science

University of Pretoria
Pretoria, South Africa, 0002

sgruner@cs.up.ac.za

Derrick G. Kourie
Department of Computer Science

University of Pretoria
Pretoria, South Africa, 0002

dkourie@cs.up.ac.za

ABSTRACT
A decision-supporting framework was applied in a pilot study to
assist in the decision making about what software development
methodology to use at a software engineering company. This
paper critically assesses this decision making process and
framework that was used at that company to decide on an
appropriate software methodology for the analysis and design of
business processes and software systems.

Keywords
Aris, Business process analysis and design, MDA, RUP, Software
development methodology, UML, URDAD.

ACM Categories [Subject Descriptors]
 D.2.1 [Software Engineering, Requirements]; D.2.9 [Software
Engineering, Management]; K.6.3 [Software Process
Management].

1. 0BINTRODUCTION
In a memorandum published almost exactly ten years ago to the
date of this conference, Gregor Snelting has strongly criticised the
inflationary proliferation of “new” software engineering concepts
and methodologies, especially from the academic community [8].
He stated that concepts and methodologies are merely produced
for the sake of publication, but would never be subject to any
attempt of empirical evaluation. Taking Snelting seriously, we
would like to be able to make a well-informed decision about
which of the many available software methodologies is useful –
and why– for a particular software engineering business in a
particular situation.

Making a decision, from an organisational perspective on what
software development methodology to use, is no small task.
Numerous users, service providers, and stakeholders are affected
by it, and therefore need to take part in the process to decide on
the appropriate software methodology. These groups all represent
different views and needs, resulting in a decision making process
that is quite often underpinned and affected by strong emotions. A

need for a more structured and rational approach to aid this
decision making process is apparent. The aim of this paper is to
critically assess the framework and process that was used in a
pilot study conducted at Strate Ltd., South-Africa, to decide on an
appropriate software development methodology for this company.

Each step that was followed, and each activity that was executed
will be explained, and assessed. The assessment of this process
and framework will therefore run throughout the paper, and be
integrated into the entire text which aims to explain the process.
The results will be summarised at the end of the paper. Special
emphasis will be placed on the question which ones of the many
criteria (or parameters) can be regarded as decisive as far as the
selection between several similar alternatives is concerned. A
pilot study can hint “qualitatively” at those parameters (or
criteria) which seem to be more significant and more decisive
than others, and which should therefore be used as the main
guidelines in the further development of a refined decision
support framework (which might be even tool-supported in the
not-too-far future).

Thus, this paper constitutes an example of empirical research in
the spirit of Snelting’s memorandum [8], and it also employs
qualitative research principles. It presents largely an interpretivist
view and can also be regarded as participatory research, as one of
the authors was part of the process and not an objective bystander.
The results of the research, however, are still considered to be
“objective” in a sense of inter-subjectivity, last but not least due
to the considerable number of experts involved in the pilot study
as commentators or interviewees, (see acknowledgments below).

The framework that was chosen to assist in this comparison
exercise is the framework that was put forward by Avison and
Fitzgerald [1]. The prescribed framework in itself was not enough
to do the comparison with, and as such it was supplemented by
further processes that will be explained in this paper. The scope of
this paper therefore includes the assessment of both the
framework as prescribed by Avison and Fitzgerald, and the
process that was used to apply this framework. The framework
and the process can be regarded as a (however not yet tool-
supported) Decision Support System, aiding management in the
decision making process. It can only produce recommendations,
not decision. The decision is still the responsibility of the
individual decision makers of an organisation.

It is important to not confuse the research approach of this paper
with the approach of the decision support process that is under
investigation.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
SAICSIT 2007, 2 - 3 October 2007, Fish River Sun, Sunshine Coast, South
Africa
Copyright 2007 ACM 978-1-59593-775-9/07/0010…$5.00

56

2. 8BSOFTWARE METHODOLOGY
It is important to understand the basic concepts of a software
methodology in order to evaluate a process and framework that
assesses methodologies. This will enable the reader to put the
process and framework that is under investigation in a better
context, and aid in the understanding of the presented results.
The BCS Information Systems Analysis and Design Working
Group defined a software methodology as “recommended
collection of philosophies, phases, procedures, rules, techniques,
tool, documentation, management, and training for developers of
information systems” [1]. According to Berard [2], a good
software methodology is a methodology which:
“can be described quantitatively, as well as qualitatively,
can be used repeatedly, each time achieving similar results,
can be taught to others within a reasonable timeframe,
can be applied by others with a reasonable level of success,
achieve significantly, and consistently, better results than either
other techniques, or an ad hoc approach, and
are applicable in a relatively large percentage of cases.”

In its simplest form, a methodology to develop software usually
has the following steps [11].
Requirements gathering
Analysis
Design
Implementation
Testing

As depicted in Figure 1, each phase loops back to the previous
phase, in order to make corrections based on new information and
a better understanding. This simplistic view of a software
methodology is known as the Waterfall model. It is not

recommended to use this as an actual software methodology, as it
has many drawbacks. It is still very useful, though, to use it as a
benchmark to help conceptualise other methodologies with [11].
There are many different variations of this simplistic
representation of a software methodology. Many software
methodologies take on different characteristics in order to address
the inherent difficulties of software development [11]. It is the
choosing between these variations that is the topic of this paper.
In essence, however, the principles of all these methodologies still
stay “the same” – which makes the choice process a difficult task.
Construction of quality software is not an easy activity. It
includes various stakeholders and participants, and involves a
significant amount of complex code, data, etc. It is therefore very
risky to assume that one can construct quality software without
any kind of a process to offer some guidance in crucial situation.
However, according to our experience, there exists a significant
amount of practitioners who do not see the need for a more
rigorous approach to develop software.
Against the methodology sceptics, Fitzgerald presents several
arguments in favour of organisations using software development
methodologies [4]:
Methodologies help to cope with the complexity of the software
development process.
Methodologies reduce risks and uncertainty by rendering the
development tasks more transparent and visible.
Methodologies may provide a framework for the application of
techniques and resources at appropriate times during the
development process.
Standardisation of the development process is available. This aids
the interchange ability of software developers. This is even more
important when development work is outsourced.
Certification (ISO, CMM, TMM, etc.) becomes possible for
organisations.
Some governments and institutions, especially in safety-critical
domains (e.g. military, air traffic control) require that certain
methodologies be used, as it increases the quality of software and
also offers a certain degree of legal protection to all parties
involved: for example, any software produced for German
national or regional authorities must comply with the V
development model.
Given the need for a software methodology, the challenge of
choosing which software methodology to adopt comes to light. It
is with that question in mind that this paper is put forward as a
pilot study, with the intent of enhancing it further, and thereby
adding value to the industry at large.
There are various different notations available for modeling
software systems. Part of the organisational requirements was to
have a standardised, internationally accepted and maintained
notation that can model both technical systems and business
processes. The well-known Unified Modelling Language (UML)
has been chosen as the underlying notation in the context of our
methodology studies, and we assume the reader to be familiar
with it [10].

57

3. 1BPILOT STUDY: OVERVIEW
The high level (meta) process that was followed to facilitate the
decision making process for selecting a software methodology is
outlined in Figure 2 below. As mentioned above, this serves as a
Decision Support System that facilitates the decision making
process. The output is a set of recommendations (not the actual
decision), as there are usually different subjective (opinion-based)
considerations that have to be balanced in further negotiations
between the various stake-holders (such as: clients, managers,
programmers) of a software engineering project or company.

We started by identifying an appropriate team to conduct the
comparison exercise. Previous experience in applying software
methodologies was a prerequisite for team members to participate
in this process. The reason for this is that the theory of how a
software methodology should be applied is quite often different
from the way that it is actually applied (see below). Identifying an
appropriate team is usually a constraint for an organisation who
wishes to conduct its own process for selecting a software
methodology. This process is reliant on having sufficient
expertise in this matter. If the organisation does not have the
relevant experience in-house, it has the option to outsource this
responsibility to an external vendor. That comes with a host of
other complications, though, which is outside the scope of this
paper.

Once the team was identified, different frameworks were
investigated to guide the decision making process. By
“framework” we basically mean a meta-method according to
which a suitable development method for the given organisation
in its given situation shall be found. An appropriate framework
was chosen, that supported the organisational requirements for the
assessment exercise. One of these framework requirements was
the ability to quantify (however crudely) the results of the
assessment exercise. This meta-requirement is mentioned here as
it turned out to have an important bearing not only on the chosen
framework itself but also on the way in which the pilot study was
conducted by its participants.

Next, the organisational requirements for a software development
methodology were gathered. At a very high-level, these
organisational requirements included the following:

• A software methodology that would facilitate the
communication and understanding between the
business and IT divisions,

• A software methodology that would create and
maintain a library of business processes at an
enterprise level, which can be reused across different
strategic projects,

• A software methodology that would maintain a model
of a software system, from where understandable
business documentation, as well as technical
documentation can be generated,

• A common notation that can be used for business and
technology minded people alike,

• An environment where different stakeholders of a
project can collaborate to build and maintain a
software model,

• A software methodology that would facilitate business
process re-engineering,

• A software methodology that can integrate with
existing processes such as the project management
methodology, quality assurance, change control, etc.,
and

• A standardised process that can be repeated for
different projects and still yield “the same” results.

58

Once the organisation’s requirements were gathered, and the
framework for comparing methodologies was chosen, the
framework was fine-tuned to include the organisational
requirements for the software methodology.

The framework was then used to select a shortlist of candidate-
methodologies to be compared. The software methodology’s
underlying principles were used to achieve this, as it was possible
to determine if an organisation’s requirements would be met by
these underlying principles. This ensured that similar
methodologies are selected and compared against each other,
comparing “apples with apples” instead of “apples with pears”,
thus resulting in a sensible planning exercise. Aris [9], RUP [11],
and URDAD [12] were chosen as candidate methodologies.
Another factor that played a role in these software methodologies
being chosen was the practical experience that the business
analysts already had in working with them.

The framework for comparing software methodologies in our
pilot study contained an initial set of different assessment criteria
(parameters) to apply to each methodology. An analysis of each
software methodology was conducted using these assessment
criteria, and a score was allocated per assessment criteria for each
methodology. Weights were assigned to each assessment criteria
to make it more relevant to the specific organisational
requirements that were gathered previously. As mentioned above,
an important purpose of the pilot study was to reflect on the
appropriateness of the initially chosen assessment parameter,
especially as far as their discriminating (distinguishing) capacity
is concerned –in simple words: how useful are these parameters–
such that similar assessment exercises in the future can be based
on a further refined set of assessment criteria.

Finally, the results of the choice process (see below) were
presented to the company’s relevant stake-holders in an in-house
conference.

4. 2BPROCESS REQUIREMENTS
The process for selecting and comparing the various
methodologies also needed to address some pre-defined
organisational requirements. A successful project is usually
defined as a project that delivers a product which meets the
original requirements. Similarly, to evaluate the efficiency and
success of this process, the results of it need to be compared
against the original requirements.
The organisational requirements that were identified for a process
and framework to compare software development methodologies
are, a framework that:
not only supports the comparison of software development
methodologies, but also aids in the preliminary selection of the
various methodologies that will be compared,
provides meaningful and relevant results (comparing “apples with
apples”, not “apples with pears”),
provides results that are quantifiable,
is repeatable,
facilitates the involvement of multiple stakeholders who has an
interest in the software methodology being chosen,
provide results that are useable enough to aid management in
making informed decisions, and also

considers the organisational requirements behind the to-be-chosen
software development methodology.

5. 3BORGANISATIONAL BACKGROUND
Strate Ltd. is the central securities depository of South Africa and
employs approximately 140 members of staff. The company is
responsible for the clearing, settlement, and corporate action
activities for the majority of the electronic trades conducted on
the Johannesburg Securities Exchange (JSE), YieldX, and the
Bonds Exchange of South Africa (BESA). It has direct links into
the South African Reserve Bank (SARB) and the SWIFT payment
network to facilitate the transfer of money in central bank funds.
Software technology is therefore extremely important to all of the
operations of the organisation, and failure of such constitutes a
systemic risk to the entire South African Financial Market.

The company consists of mainly three areas:
Multiple business divisions, the most important being the Clearing
& Settlements and the Issuer & Asset Services Division,
IT division, and
Enterprise Development division.
The Enterprise Development division is responsible for
management and implementation of technology intensive
projects. The Business Analysis Department is part of the
Enterprise Development Division, and interfaces with the
Business Divisions as well as the IT Division.

As a result of the intent of a software methodology to be far
reaching and bridging gaps, many different role players needed to
be involved in the decision making process pertaining for a
software methodology. The majority of the process was, however,
still conducted by the Business Analysts, who possessed the
working experience in various methodologies. The project leader,
together with three other Business Analysts collaborated to
facilitate the processes and make an informed decision on what
software methodology would be the most appropriate for the
organisation.

59

Even though the business analysts were involved in driving the
process, it was endeavoured to involve the opinions of as many as
possible business and IT resources. This task was challenging, and
it was felt that better participation of the business and IT divisions
in the initial phases of the process would have improved the end
results, and increasing the organisational understanding of what
the chosen software methodology would be expected to achieve.
Another challenge was the fact that only four business analysts
were involved in the process. The statistical accuracy would have
been greatly improved if more resources were available for this,
as personality influences may have been averaged out. It is
therefore recommended more than six resources are involved in
driving the process when three methodologies are evaluated. This
is purely a recommendation based on the experiences gained, and
further studies could help define these variables more accurately.
We believe that the process was sufficiently fair in giving each
analyst the opportunity to voice their concerns, and having one
person being the common denominator to ensure unified
understanding and application of the process.

6. 4BASSESSMENT OF FRAMEWORKS
A number of frameworks were identified as possible means of
comparing methodologies. The most prevalent of these was a
framework put forward by Avison and Fitzgerald [1]. The other
frameworks that were considered are mentioned here as well.

6.1 9BBjorn-Anderson's Framework
Bjorn-Anderson suggested a much broader range of issues to
consider when choosing a software development methodology
than Avison and Fitzgerald [1]. Criteria relating to values and
society are used to assist in the evaluation. Some of them include:
What research paradigms form the foundation of the
methodology?
What are the underlying value systems?
In what context is a methodology useful?
To what extent is modification possible?
Does communication and documentation consider the user’s
dialect?
Does transferability exist?
Is the societal environment dealt with?
Is user participation encouraged?
The above list is broad and rather subjective. It is also stated that
it makes some assumptions, such as if user participation is really
desired [1].

6.2 10BNIMSAD
Normative Information Model-based Systems Analysis and
Design (NIMSAD) is based on the models and epistemology of
systems thinking and mostly evaluates a methodology against
these criteria. The evaluation consists of three elements [1]:
The ‘problem situation’ (the methodology context).
The intended problem solver (the methodology user)
The problem solving process (the methodology)

This framework aims to evaluate a methodology during three
stages. First, before the methodology is adopted, second during its
use, and third after an assessment of the success of the
methodology. It therefore takes into account organisational
learning.

6.3 11BDavis's Framework
Davis [1] advises the contingency approach, by selecting of an
approach as part of the framework or methodology itself. He
offers guidelines to select an appropriate approach to the
determination of requirements, rather to the selection of a
methodology itself. He suggests measuring the level of
uncertainty of a system, by taking into account [1]:
System complexity,
The state or flux of the system,
The user component of the system, and
The level of skills and experience of the analysts.
An approach to choose and compare a methodology is therefore
chosen depending on the specific situation. If there are, for
example, low levels of uncertainty, interviewing users to gather
requirements might be appropriate. For higher levels of
uncertainty, a prototype could, for example, be used.

6.4 12BAvison and Taylor's Framework
Avison and Taylor [1] identify five different classes of situation,
and then suggest appropriate approaches to address these
situations:
Well structured problems with clear requirements: A traditional
SDLC might be appropriate.
Well structured problems with unclear requirements: A data,
process modeling, or prototype approach may be appropriate.
Unstructured problem situation with unclear objectives: A “soft”
system approach may be appropriate.
High user interaction system: A people focused approach such, as
Ethics, may be appropriate.
Very unclear situations: A contingency approach, such as
Multiview, may be appropriate.
This framework is useful to choose what kind of methodology
should be used, but could prove difficult as a tool to compare
different methodologies.

6.5 13BComparison
These different frameworks all have their respective strengths and
weaknesses. A concern is that they all provide very subjective
unspecific assessment criteria. Another challenge is that the
number of assessment criteria that is available in the above
frameworks might not be enough. When the analysis of each
methodology is exploratory in nature, there is a need to have a
significant number of assessment criteria, as the more criteria that
are available the better supported the decision would be. The
chosen framework will be presented next.

60

7. 5BTHE CHOSEN FRAMEWORK
The framework as suggested by Avison and Fitzgerald [1] was
chosen to aid the decision making process. The main reason for
choosing this framework was the precise assessment criteria that it
provides to compare the different methodologies against, in
contrast to the other frameworks what were regarded as too
imprecise and subjective.
Each assessment criterion that is supplied in Avison and
Fitzgerald’s framework is mentioned below, as well as a short
explanation.

The Software Methodology’s Underlying Principles plays an
important role in understanding what a particular methodology is
about. According to Avison and Fitzgerald [1], the underlying
principles of a methodology underscore all other aspects. By
looking at the underlying principles, one can distinguish a
“method” from a “methodology”. The choice of the areas covered
by the methodology, the systems, data or people orientation, the
bias or otherwise toward a pure IT solution and other aspects are
made based on the underlying principles of the methodology.
These underlying principles may be explicit or implicit.
As a guide to the underlying principles the four factors of
paradigm, objectives, domains, and targets are highlighted
below [1].

There are two paradigms of relevance [1]. The first is the science
paradigm (which has characterised most of the scientific
developments of recent times), and the second is the systems
paradigm (which is characterised by a holistic approach).
According to Kuhn, as quoted by Avison and Fitzgerald [1], a
paradigm is a specific way of thinking about problems,
encompassing a set of achievements which are acknowledged as
the foundation of further practice. A paradigm is usually subject
free, and is generic enough to be applied to a number of problems
regardless of the content. An example of a paradigm is object
orientation, or iterative driven approaches, etc., as further
discussed in [6].

The objectives of a software methodology define what the
methodology is trying to achieve. It can, for example, state that
the methodology is only concerned with system development,
while the objectives of other methodologies might be to take a
wider view into account, for example, to re engineer the
organisation’s business processes. This is not the same as the
scope of a methodology that will be discussed later, which is
related to the exclusion and inclusion of certain steps of the
development life cycle. The objectives are focused on the
boundaries of concern that the methodology should address.

The domain refers to the domain of situations that a software
methodology addresses. Some methodologies, for example, only
concentrates on a narrow view, and does not take into account a
broader view, such as the strategic requirements of the
organisation. The domain criterion is therefore concerned with
aligning business and IT goals, and how well the methodology
supports that.
An example may be to have requirements traceability from
requirements to the system realisation, and as such, one could
asses if the solution meets the needs of the organisation.

The target refers to the applicability of the methodology. The
question to be answered is to what situation, culture, or
organisation the methodology is targeting.
The software development methodology’s “philosophy” was used
to decide on a short list of methodologies to include in the
comparison exercise. This was achieved by taking into account
the organisational requirements that were gathered, and only
choosing those methodologies whose “philosophies” supported
these requirements.
Another important factor that was considered was to ensure that
only software development methodologies were selected that
supports the organisational culture. This saves a significant
amount of time, by only considering methodologies that could be
practically implemented if selected.

The Separation of Logical Design implies that there should be a
separation of requirements, and how it is implemented, i.e. what
versus how [1]. This is also outlined by the MDA (Model Driven
Architecture), maintained by the OMG (Object Management
Group), which specifies that analysis and design should produce a
PIM (Platform Independent Model). The separation of logical and
physical design, though, does not imply that requirements should
not be traceable to design and implementation [12].

Rules support the notion that methodologies should provide
formal guidelines to cover phases, tasks, and deliverables, and
their ordering, techniques and tools, documentation and
development aids, and guidelines for estimating time and resource
requirements [1].

The Model is the basis of the software methodology’s view of the
world. It is an abstraction and a representation of the important
factors of the information system or business process. The model
works on a number of difference levels [1]:
Means of communication;
A way of capturing the essence of a problem or design, such that
it can be translated or mapped onto another form (e.g.
implementation) without loss of detail; and
It is a representation which provides insight into the problem area
of concern.
Models can be:
Verbal;
Analytical or mathematical;
Iconic, pictorial, or schematic; or
Simulation.
Most information systems methodologies are of the iconic,
pictorial, or schematic type.

The Techniques and Tools referred to here are the various
strategies and technologies used to support the methodology. An
example might be that RUP uses UML and “Rational Rose”.

The Scope of a software methodology refers to the amount of
activities that it covers in the software development project life
cycle. A methodology should ideally cover the entire systems
development process from strategy to maintenance [1].

The Outputs of a methodology are measured at every step of the
process, not just at the end. Different outputs can be delivered at
different points. They key factor here is that the methodology

61

should be able to produce a certain artefact at a point in time in
order to support a specific process from another discipline. An
example might be that the methodology should be able to produce
estimates early in the life cycle, in order to integrate with the
project management methodology.

The Practice of a methodology refers to the gap between the
intended use of a methodology, i.e. the theory, and the actual
application in practice. According to Avison and Fitzgerald [1],
the practice can also refer to the degree to which the methodology
can be, and is altered or interpreted by the users according to the
requirements of the particular situation. It can be viewed in terms
of the following: The background refers to the origin and intended
use of a methodology, such as academic or commercial, the user
base refers to the numbers and the types of users, and the
participants refer to the participation of various role players, such
as users and analysts.

The Understanding of the Information Resource refers to the
ability of a methodology to ensure effective utilization of an
organisation’s information resources, such as existing business
process and data [1]. This implies the knowledge share and reuse.

Documentation Standards refers to the ability of a methodology
to output documentation according to agreed standards that are
understandable by business and technical users [1]. Internationally
accepted and standardized notation such as UML should be used.
Further more, a methodology should be able to proved output for
a variety of audiences, such as high level documentation for
business executives, more detailed business processes for
operational staff, and technical documentation of IT resources.

The Validity of Design dictates that there should be a means of
checking for inconsistencies, inaccuracies, and incompleteness of
the deliverables of a methodology [1].

Early change refers to the requirement that any changes to a
system design should be identifiable as early as possible in the life
cycle [1].

Inter-stage Communication supports the notion that the full
extent of work carried out should be communicable to other
stages, with each stage being consistent, complete, and usable [1].

Planning and Control is a management requirement for software
development methodologies. Careful monitoring is required, as
well as the support of development in a planned and controlled
manner in order to contain costs and time scales [1]. The
methodology should therefore be integrate-able with other
processes, such as the project management and quality assurance
processes.

Performance Evaluation refers to the ability of a software
methodology to support a means of evaluating the performance of
operational application developed using it (or business processes
implemented).

Increased Productivity should be visible for users of the
methodology, such as analysts, as well as for stakeholders of the
project that was undertaken using the methodology [1].

Improved Quality for a software methodology is measurable in
terms of the improvement of the quality of analysis, design, and
programming products, and hence the overall quality of the
information system [1]. It should also be measurable in terms of
the quality of a redesigned business process.

Visibility of the Product requires that a methodology should
maintain the visibility of the emerging and evolving information
system as it evolves [1]. This assists in more effective project
management and risk management activities.

The Teach-ability of a software methodology refers to how easy
it can be taught to others. Users as well as technologists should
understand the various techniques in a methodology in order to
verify analysis and design work, and train others to use it [1].

The Information System Boundary refers to the ability of a
software methodology to allow definition of the areas of the
organisation to be covered by the information system. These may
not all be areas of computerisation [1].

Designing for Change requires that the logical and physical
designs should be easily modified [1]. This will ensure that the
ability to effectively maintain a software project after deliver is
greatly increased.

Effective Communication should be provided between analysts,
IT, and users [1].

Simplicity refers to the ease of use of the software methodology
[1].

Ongoing Relevance refers to the saleability of software
methodology. It should be capable of being extended so that new
techniques and tools can be incorporated as they are developed,
but still maintain overall consistency and framework [1].

Automated Development Aids refer to software and tools that
can be used with the software methodology. This should be
practiced wherever possible, as they can enhance accuracy and
productivity [1].

The Consideration of User Goals and Objectives of potential
users of a system should be noted, so that when an information
system is designed it can be made to satisfy these users and assist
them in meeting goals and objectives [1]. An example could be
the use of use-cases to capture a user’s goals, and have
requirements traceability through to realisation.

Integration of Technical and Non-Technical Systems refers to
the ability of a software methodology to not only address the
technical and non-technical aspects of a system, but should make
provision for their integration [1].
Scan for Opportunity refers to the ability of a methodology to
enable the system to be thought about in new ways. Rather than
being viewed as simply a solution to existing problems it should
be seen as an opportunity to address new areas and challenges [1].

Product and Cost refers to what purchasers actually get for their
money. This might include software, written documentation,
telephone support, consulting, and training.
These assessment criteria are more specific than that of the other
frameworks mentioned earlier, and therein lies their usefulness.
Assessing methodologies in an exploratory way is greatly
supported by having more criteria as opposed to less.

8. 6BORGANISATION REQUIREMENTS
Once the assessment criteria above were understood, it was
important to ensure that they also fully represent the
organisational requirements for a software development
methodology.

62

An exercise was conducted to make sure that each of the
organisational requirements that were mentioned earlier was
represented by at least one of the assessment criteria above. It was
also investigated whether some assessment criteria contradicted
an organisational requirement. None were found.
By taking into account the organisational requirements of a
software methodology, the process ensures that the framework is
customisable for any company of any size, in any industry.

9. 7BMETHODOLOGY CANDIDATES
By matching the organisational requirements for a methodology,
to the underlying principles of available methodologies, a shortlist
was chosen. The following methodologies were chosen for the
comparison exercise:

Aris (ARchitecture for integrated Information Systems)

RUP (Rational Unified Process)

URDAD (Use-case Responsibility Driven Analysis and Design)
All of the above methodologies have certain best practice
commonalities that will ensure that they are indeed comparable,
and that the result of the comparison is quantifiable. One such
commonality is that they are all iterative and incremental
approaches, and they all utilise the UML (Unified Modeling
Language) as specified and maintained by the OMG (Object
Management Group).
When selecting a methodology, it is important to not only select it
based on its theoretical promises. Many methodologies only
display academic concepts, without accompanying empirical
evidence to support its claims. Some authors, such as Snelting,
have identified this as a problem. As mentioned above he had
published a memorandum to software professionals for more
stringent methodological standards and as well as their empirical
validation in software technology [8]. He also argued that
predictions need to be falsifiable, and as such, if a methodology
predicts a certain outcome, that outcome needs to be measurable
in order to test the theory, as further discussed in [6]. This is one
of the driving factors for only choosing methodologies that have
been implemented in practice, in order to have empirical evidence
available to assess them with.

9.1 14BAris
The Architecture of Integrated Information Systems (Aris) claims
to be the benchmark for enterprise-wide Business Process
Management. It is owned by IDS-Scheer, an international IT
process company [9].
Aris is a methodology that comes bundled with commercial
software. This means that Aris as a methodology is obtainable if
one purchases licences for the software.

9.2 15BRUP
The Rational Unified Process (RUP) is a methodology that is
owned and maintained by IBM. It is probably the most widely
used methodology; its main three contributors were Jacobson,
Booch and Rumbaugh [11].
RUP is bundled with commercial software called Rational Rose.
The RUP methodology is available in its complete format when
one purchases licences for the software.

9.3 16BURDAD
The Use case Responsibility Driven Analysis and Design
(URDAD) methodology is a novel methodology that aims to
bring together the most widely used best practices. It consists of a
simple algorithm that produces a Platform Independent Model
(PIM) as defined by the Model Driven Architecture (MDA) [12].
It was developed and is maintained by a South African based IT
training and consulting firm called Solms Training Consulting and
Development (STCD). It is freely obtainable under the Public
License Agreement.
URDAD does not come bundled with commercial software. It
was our approach to use Magic Draw UML in combination with
URDAD, as it is an UML modeling tool that supported the
URDAD methodology quite well.

10. 17BASSESSMENT AND CHOICE
It was attempted to select methodologies that are similar, and by
doing that, increase the accuracy of– and thereby, also the
difficulty of– our comparison exercise.
The organisational requirements were used to select the shortlist
of methodologies, by investigating their underlying principles. A
challenge was that most software companies guard their
intellectual capital very closely. Unfortunately, it makes it
difficult to gain access to the underlying principles of the
methodology, without purchasing the methodology. One is
therefore reliant on previous assessments and personal
experiences of the methodologies.
The result of this was that we had to choose methodologies about
which we had information and experience, to be part of the
comparison exercise. Unfortunately it is difficult to know which
methodologies were missed as a result of this constraint.

10.1 18BAssessment Process
Each software methodology on the shortlist was assessed per
assessment criteria as per Avison and Fitzgerald’s framework [1].
Each analyst was assigned to a software methodology based on
the level of experience on that methodology. This was possible, as
the experience of the analysts were taken into account when the
respective software methodologies were chosen.
Because of resource constraints, there was one analyst assessing
each of the three software methodologies. The team leader of the
project was involved in the assessment of all three methodologies
in order to ensure a unified understanding of each assessment
criteria.

10.2 19BCollaborative Scoring
Once the different software methodologies were assessed using
the assessment criteria of the framework, the results were
preliminarily quantified. However, this quantification was still
largely based on subjective “intuition”, as it is typical for an
initial pilot study. (Subsequent studies are expected to be more
accurate, based on the insights gained from the pilot study.)
This exercise was conducted as a collaborative effort. An in-house
workshop was arranged and each analyst had to present their
findings for each assessment criteria. The score for each
methodology per assessment criteria was then discussed and
agreed on.

63

A numeric score of between 1 and 5 was given for each criterion,
with the following interpretation:
Very bad: “Does not meet this requirement of this criterion”,
Bad: “Hardly meets the requirement of this criterion”,
Average: “Modestly meets the requirement of this criterion”,
Good: “Meets the requirement of this criterion very well”,
Very good: “Meets the given requirement exceptionally well”
There was a concern that an even scale should have been used in
order to avoid the middle ground option, i.e. choosing “average”
too much. This was not needed in this instance, as most scores
ranged between 4 and 5 (see Table 1 below). The reason for this
was that the shortlist only contained strong industry standard
methodologies of similar nature that naturally scored well on most
of the assessment criteria. For a more generic framework, even
scales should be considered in the future.
Another concern was the risk of double scoring. Some assessment
criteria might be very similar to others. In principle, all the
assessment criteria are different, and as such, if one interpret them
as the same, it might constitute a lack of understanding of that
particular assessment criterion and it should be investigated
further. This risk can further be reduced by adjusting the scores
for similar assessment criteria by using weightings (see below).

10.3 20BAssignment of Weights
In order to make the method more relevant to the organisation in
question, the organisation’s requirements for a software
development methodology also had to be integrated into the
quantified results. This was done to address the organisational
requirement for the process of choosing a software methodology
to be meaningful a relevant to the organisation.
This was achieved by attaching weights to each assessment
criterion, with assessment criterion that are more relevant to the
organisation receiving a larger weight, and the criterion that were
less relevant to the organisation, receiving a smaller weight. The
decisions about the weights-values were based on the
organisational requirements on software engineering methodology
as described and explained above.
The concern was that the weights should have been defined before
the collaborative scoring exercise. We believed, however, that an
adequate understanding of the assessment criterion and the
organisational requirements for the software process methodology
was only at a sufficient level late in the process, making the
weighting decisions more meaningful at this point. In this way we
also avoided the problem of whom to select as a privileged person
to define the weights before the assessment sheet was handed out
to the members of the assessment team.
The following weightings were assigned to each assessment
criteria’s based in the relevance to the organisation:
0.5 – “Low” relevance
1.0 – “Normal” relevance
1.5 – “High” relevance

11. 21BRESULTS
Our results are twofold. Firstly, a better understanding of the
respective methodologies was gained in order to aid the decision

making process. Secondly, some statistical outputs were
generated to aid in the decision making process. The results are
displayed in Table 1, which shows the assessment criteria, as well
as the normal and adjusted scores for each methodology. There
were some assessment criterion for which the respective
methodologies scored equally. In order to simplify the results,
these are aggregated in the line item “Equal Scoring Criterion”.
It seemed that URDAD scored the highest, and as such, promised
a higher benefit realisation. It should also be noted that the actual
scores are very similar, and as such, one can question its
relevance. As was stated previously, the scores are only intended
to aid the decision making process, and is not a final decision in
itself.
For example, if cost is a major consideration for an organisation
when choosing a software development methodology, then this
data would be able to approximate a cost benefit ratio. In our cost
analysis, initial investment costs were estimated per methodology,
and this was used to assign the scores for the “product and cost”
assessment criterion. If “Product and Cost” is removed from
Table 1, a cost benefit ratio can be calculated for each
methodology: see Table 2. This can in fact be seen as the amount
of Rands spend per benefit point, and as such, the lower the ratio,
the better the investment: see Table 2.

Table 1. Methodology Scores
Assessment Criteria Weighting

N
or

m
al

A
dj

us
te

d

N
or

m
al

A
dj

us
te

d

N
or

m
al

A
dj

us
te

d

Rules 1 4 4 3 3 4 4
Model 1 3 3 3 3 5 5
Techniques and Tools 1 5 5 5 5 5 5
Scope 0.5 3 1.5 5 2.5 3 1.5
Documentation Standards 1 3 3 4 4 4 4
Planning and Control 1.5 4 6 3 4.5 4 6
Improved Quality 1.5 4 6 4 6 4 6
Teachable 1.5 3 4.5 3 4.5 4 6
Information System Boundary 1 3 3 4 4 5 5
Designing for Change 1.5 4 6 4 6 4 6
Effective Communication 1.5 4 6 4 6 4 6
Simplicity 1.5 3 4.5 3 4.5 5 7.5
Automated Development Aids 0.5 4 2 4 2 4 2
Consideration of User Goals and
Objectives 1.5 4 6 4 6 4 6

Scan for Opportunity 0.5 4 2 4 2 4 2
Product and Cost 1.5 1 1.5 2 3 5 7.5
Equal Scoring Criterion 49 49 49 49 49 49

105 113 108 115 117 128.5

Aris RUP URDAD

Table 2. Cost-Benefit Estimation
Aris RUP URDAD

Adjusted Score excluding
Product and Cost 111.5 112 121
Initial Investment Cost 1,100,000.00 800,000.00 70,000.00
Cost Benefit Ratio 9,865.47 7,142.86 578.51
It was established from all of the results that the URDAD
methodology should be the chosen methodology for the
organisation, but the decision still remains a subjective exercise.
These results were presented to the decision makers, accompanied
by the recommendations of the business analysis team. The
decision was then made by the decision makers, based on both the

64

qualitative and quantitative data, that the organisation would
adopt the URDAD methodology.

12. 22BSUMMARY AND FUTURE WORK
The contribution of this paper is an assessment of a framework to
compare software development methodologies. The framework
was presented as well as the requirements that such a framework
should achieve. The practical experiences of the facilitators have
been integrated into the explanation of the process to apply this
framework.
As was stated previously, the original requirements for a
framework to compare software methodologies are a framework
that:
not only supports the comparison of software development
methodologies, but also aids in the preliminary selection of the
various methodologies,
yields meaningful and quantifiable comparison results
is repeatable from project to project,
facilitates the involvement of multiple stakeholders,
aids management in making informed decisions,
considers organisational requirements.
Each of these requirements was reflected upon in order to assess
if the process that was presented did indeed meet the
requirements.
The well-defined process aided in the preliminary selection of
different software methodologies to compare. This was achieved
by using the organisational requirements, and matching them to
methodologies by considering their underlying principles.
By using these underlying principles, and comparing “apples with
apples”, the second requirement was also met. The results were
also meaningful in the fact that it gave decision makers enough
data to make an informed decision.
The results were proved to be quantifiable, and as such, this
requirement was also met. Some improvements could be made
here, though, in terms of a better scoring scale and weighting
calculations. However, the principle still holds.
This process is indeed repeatable, as it takes into consideration the
unique nature of the organisation and the industry in which it
operates. Other organisations can therefore utilise this process to
assess their own methodologies without the need of an external
consultant.
The process involved all stakeholders from the beginning of the
process until the end. It does therefore meet this requirement as it
took into account views form all the different areas in the
organisation that had a stake in the end result.
The results were shown to be usable enough to aid in the decision
making process. For example, even if the URDAD methodology
had a lower score that Aris or RUP, and cost was an important
consideration, it still would have been chosen as the differences of
the scores were not significant. This shows that more information
is available than just the scores, and supports the case for this
process to be seen as a decision support system.
The organisation’s requirements for a software development
methodology were taken into account, by gathering them at the
beginning of the process.

The process and framework to compare software development
methodologies presented in this paper serves as a pilot study.
Very few sources are available that address this important
activity. The intent of this paper is to stimulate debate and initiate
future research in the area of software methodologies. We
conjecture that this would considerably increase the possibility of
a more complete framework, and processes to apply that
framework, to be created by the research community and add
significant value to the software industry.

13. 23BACKNOWLEDGMENT
We would like to thank several members of staff of Strate Ltd.,
South-Africa, for being supportive of the process described in our
paper, especially: Eileen Thornhill, Elli Lechtman, Hayley Smith,
Janeen van der Walt, Ronel Pieterse, and Mike Higgo.

14. 24BREFERENCES
[1] AVISON, D., and FITZGERALD, B.: Information Systems

Development Methodologies, Techniques and Tools. New
York: McGraw-Hill, 2003.

[2] BERARD, E.V.: What is a Methodology? White paper: The
Object Agency, 1995.

[3] BROOKS, F.P.: No Silver Bullet – Essence and Accidents of
Software Engineering. IEEE Computer, 20(4), pp. 10-19,
1987.

[4] FITZGERALD, B.: An Empirical Investigation into the
Adoption of Systems Development Methodologies.
Information & Management 34, pp. 317-328, 1998.

[5] KULAK, D., and GUINEY, E.: Use Cases – Requirements in
Context, 2nd Ed. Boston: Pearson Education, 2004.

[6] NORTHOVER, M., and NORTHOVER, A., and GRUNER,
S., and KOURIE, D.G., and BOAKE, A.: Agile Software
Development – A Contemporary Philosophical Perspective.
SUBMITTED FOR REVIEW: SAICSIT 2007

[7] SCHACH, S.R.: Object-Oriented & Classical Software
Engineering, 6th Ed. New York: McGraw-Hill, 2004.

[8] SNELTING, G.: Paul Feyerabend und die Software-
Technologie. Softwaretechnik Trends 17(3), 1997. English
translation: Paul Feyerabend and Software Technology.
Software Tools for Technology Transfer 2(1), pp. 1-5, 1998.

[9] Architecture of Integrated Information Systems.
HUhttp://www.aris.com/ U

[10] Object Management Group. HUhttp://www.uml.org/ U
[11] Rational Unified Process.

HUhttp://www-306.ibm.com/software/rational/U
[12] Solms Training Consulting and Development.

HUhttp://www.solms.co.za/ U

65

