Worked Example 2
24 February 2020 10:22
The input shaft of a gear box rotates clockwise with an input speed of $\mathbf{2 0 0 0}$ RPM, whilst the output shaft rotates at $\mathbf{5 0 0}$ RPM and rotates anticlockwise. If the input power is $\mathbf{5 0} \mathbf{K W}$ and the gearbox is 60% efficient calculate the following: +VE

1. The input torque
2. The output power
3. The output torque
4. The holding torque

1) Input ToRque (T_{1})

$$
\begin{aligned}
& P_{1}=\frac{2 \pi N, T_{1}}{60} \\
& T_{1}=\frac{P_{1 \times 6}}{2 \pi N,}=\frac{50000 \times 60}{2 \times \pi \times 2000} \\
& T_{1}=\frac{238 \cdot 73 \mathrm{NM}}{\text { Clockwise }(-V E)}
\end{aligned}
$$

2) out fut Power (P_{2})

$$
\begin{aligned}
\text { Efficency } R & =\frac{P_{\text {owes out }}}{P_{\text {ouse in }}} \times 100=\frac{P_{2}}{P_{1}} \times 100 \\
0.6 & =\frac{P_{2}}{50000}=0.6 \times 50000 \\
P_{2} & =30,000 \mathrm{w} \text { or } 30 \mathrm{kw}
\end{aligned}
$$

3) Cutpur Torquo (T_{2})

$$
\begin{aligned}
& \text { Powse out }=\frac{2 \pi N_{2} T_{2}}{60} \\
& T_{2}=\frac{P_{2} \times 60}{2 \pi N_{2}}=\frac{30000 \times 60}{2 \pi \times 500} \\
& T_{2}=572.96 N_{m}
\end{aligned}
$$

ANT, Clock wise (TVE)
4) Hdoing Torque (T_{3})

$$
\begin{aligned}
& T_{1}+T_{2}+T_{3}=0 \\
& -238.73+572.96+T_{3}=0 \\
& T_{3}=238.73-572.96 \\
& =\frac{-334.23 \mathrm{Nm}}{\text { CloclewisE }}
\end{aligned}
$$

