
1

Java Arrays

Introduction

An array is a collection of similar types of data.

For example, if you want to store the names of 100 people then you can create an array of
the string type that can store 100 names: String[] array = new String[100];

Here, the above array cannot store more than 100 names. The number of values in a Java
array is always fixed.

Declaring an array in Java

dataType[] arrayName;
dataType - it can be primitive data types like int, char, double, byte, etc. or Java objects
arrayName - it is an identifier

For example: double[] data; Here, data is an array that can hold values of type double.

To define the number of elements that an array can hold, you have to allocate memory for
the array in Java. For example,
// declare an array
double[] data;

// allocate memory
data = new double[10];

Here, the array can store 10 elements. You can also say that the size or length of the array
is 10.

You can declare and allocate the memory of an array in one single statement. For example:
double[] data = new double[10];

Initialising Arrays in Java

//declare and initialize and array
int[] age = {12, 4, 5, 2, 5};

Here, you have created an array named age and initialized it with the values inside the curly
brackets.

Note that you have not provided the size of the array. In this case, the Java compiler
automatically specifies the size by counting the number of elements in the array (i.e., 5).

In the Java array, each memory location is associated with a number. The number is known
as an array index. You can also initialize arrays in Java, using the index number.
For example,

// declare an array
int[] age = new int[5];

https://www.programiz.com/java-programming/class-objects
https://www.programiz.com/java-programming/keywords-identifiers#identifiers

2

// initialize array
age[0] = 12;
age[1] = 4;
age[2] = 5;
..

Java Arrays initialization

Note:
• Array indices always start from 0. That is, the first element of an array is at index 0.
• If the size of an array is n, then the last element of the array will be at index n-1.

Accessing Elements of an Array in Java

You can access the element of an array using the index number. Here is the syntax for
accessing elements of an array:

// access array elements
array[index]

Example of accessing array elements using index numbers:

class Main {
 public static void main(String[] args) {

 // create an array
 int[] age = {12, 4, 5, 2, 5};

 // access each array elements
 System.out.println("Accessing Elements of Array:");
 System.out.println("First Element: " + age[0]);
 System.out.println("Second Element: " + age[1]);
 System.out.println("Third Element: " + age[2]);
 System.out.println("Fourth Element: " + age[3]);
 System.out.println("Fifth Element: " + age[4]);
 }
}
Run Code

Output

Accessing Elements of Array:
First Element: 12
Second Element: 4
Third Element: 5
Fourth Element: 2
Fifth Element: 5

In the above example, notice that you are using the index number to access each element of
the array.

https://www.programiz.com/java-programming/online-compiler

3

Looping Through Array Elements

Example: Using For Loop
class Main {
 public static void main(String[] args) {

 // create an array
 int[] age = {12, 4, 5};

 // loop through the array
 // using for loop
 System.out.println("Using for Loop:");
 for(int i = 0; i < age.length; i++) {
 System.out.println(age[i]);
 }
 }
}
Run Code

Output

Using for Loop:
12
4
5

In the above example, you are using the for Loop in Java to iterate through each element of
the array. Notice the expression inside the loop:

age.length

Here, you are using the length property of the array to get the size of the array.
You can also use the for-each loop to iterate through the elements of an array. For example,

Example: Using the for-each Loop
class Main {
 public static void main(String[] args) {

 // create an array
 int[] age = {12, 4, 5};

 // loop through the array
 // using for loop
 System.out.println("Using for-each Loop:");
 for(int a : age) {
 System.out.println(a);
 }
 }
}
Run Code

Output

Using for-each Loop:
12
4
5

https://www.programiz.com/java-programming/online-compiler
https://www.programiz.com/java-programming/enhanced-for-loop
https://www.programiz.com/java-programming/online-compiler

4

Example: Compute Sum and Average of Array Elements

class Main {
 public static void main(String[] args) {

 int[] numbers = {2, -9, 0, 5, 12, -25, 22, 9, 8, 12};
 int sum = 0;
 Double average;

 // access all elements using for each loop
 // add each element in sum
 for (int number: numbers) {
 sum += number;
 }

 // get the total number of elements
 int arrayLength = numbers.length;

 // calculate the average
 // convert the average from int to double
 average = ((double)sum / (double)arrayLength);

 System.out.println("Sum = " + sum);
 System.out.println("Average = " + average);
 }
}
Run Code

Output:

Sum = 36
Average = 3.6

In the above example, you have created an array of named numbers. You have used
the for...each loop to access each element of the array.
Inside the loop, you are calculating the sum of each element. Notice the line,

int arrayLength = number.length;

Here, you are using the length attribute of the array to calculate the size of the array. You
then calculate the average using:

average = ((double)sum / (double)arrayLength);

As you can see, you are converting the int value into double. This is called type casting in
Java. To learn more about typecasting, visit Java Type Casting.

https://www.programiz.com/java-programming/online-compiler

