Activity 10 – Exception Handling
Program 1
import java.util.Scanner;
public class ExceptionExample
{
 	public static void main(String[] args)
{
 		Scanner scanner = new Scanner(System.in);
try
{
 		System.out.print("Enter a number: ");
 		Int number = scanner.nextInt();

 			// Division by zero will cause an ArithmeticException
 			int result = 10 / number;
 			System.out.println("Result: " + result);
 		}
		 catch (ArithmeticException e)
{
 		System.out.println("Error: Cannot divide by zero. Please enter a non-zero number.");
 		}
catch (Exception e)
{
 		System.out.println("An unexpected error occurred: " + e.getMessage());
 		}
finally
{
 		// The code in this block will be executed whether an exception occurs or not
 		System.out.println("Finally block: This code always runs.");

 		// It's a good practice to close resources, like a Scanner, in the finally block
 		scanner.close();
 		}

 		System.out.println("Program execution continues after the try-catch-finally block.");
 	}
}

In this example:
· The user is asked to input a number, and the program attempts to perform a division operation.
· If the user enters 0, an ArithmeticException will be caught in the catch block specifically for arithmetic exceptions.
· If the user enters any other non-integer input or there is another unexpected error, it will be caught in the more general catch block.
· The finally block is used to ensure that certain code (such as closing a resource like a Scanner) is executed regardless of whether an exception occurs or not.
Remember that it's crucial to handle exceptions appropriately in your programs to ensure robustness and graceful error recovery.

Program 2
import java.util.Scanner;
public class ArrayExample
{
 	public static void main(String[] args)
{
 		Scanner scanner = new Scanner(System.in);
 		try
{
 			System.out.print("Enter the size of the array: ");
 			int size = scanner.nextInt();

 			// Attempt to create an array with the specified size
 			int[] numbers = new int[size];

 			System.out.println("Enter elements of the array:");
 			for (int i = 0; i < size; i++)
{
 			System.out.print("Element " + (i + 1) + ": ");
 			numbers[i] = scanner.nextInt();
 			}

 			// Attempt to access an index beyond the array's bounds
 			System.out.print("Enter the index to retrieve from the array: ");
 			int index = scanner.nextInt();
 			System.out.println("Value at index " + index + ": " + numbers[index]);
 		}
catch (NegativeArraySizeException e)
{
 			System.out.println("Error: Array size cannot be negative.");
 		}
catch (ArrayIndexOutOfBoundsException e)
{
 			System.out.println("Error: Index is out of bounds. Please enter a valid index.");
 		}
catch (Exception e)
{
 			System.out.println("An unexpected error occurred: " + e.getMessage());
 		}
finally
{
 			// Close the Scanner in the finally block to ensure proper resource cleanup
 			scanner.close();
 			System.out.println("Finally block: This code always runs.");
 		}

 		System.out.println("Program execution continues after the try-catch-finally block.");
 	 }
}
In this example:
· The program prompts the user to enter the size of the array and the elements of the array.
· It attempts to create an array of the specified size and populate it with user-inputted values.
· The user is then asked to enter an index, and the program attempts to retrieve the value at that index.
· Various exceptions, such as NegativeArraySizeException and ArrayIndexOutOfBoundsException, are caught in the appropriate catch blocks.
· The finally block is used to close the Scanner to ensure proper resource cleanup.
This example demonstrates how to handle exceptions related to array operations.

Program 3
This program simulates a simple bank account with withdrawal and deposit operations.

import java.util.Scanner;

public class BankTransactionExample
{
 	private static double balance = 1000; // Initial balance
 	public static void main(String[] args)
{
 	 Scanner scanner = new Scanner(System.in);
 try
{
 			System.out.println("Welcome to the Bank Transaction Program!");
 		// Perform transactions until the user chooses to exit
 			while (true)
{
 			System.out.println("\n1. Deposit");
 			System.out.println("2. Withdraw");
 			System.out.println("3. Check Balance");
 			System.out.println("4. Exit");
 			System.out.print("Enter your choice: ");

 			int choice = scanner.nextInt();
 	switch (choice)
{
 				case 1:
 					System.out.print("Enter the deposit amount: $");
 					double depositAmount = scanner.nextDouble();
 					deposit(depositAmount);
 					break;
 				case 2:
 					System.out.print("Enter the withdrawal amount: $");
 					double withdrawalAmount = scanner.nextDouble();
 					withdraw(withdrawalAmount);
 					break;
 				case 3:
 					checkBalance();
 					break;
 				case 4:
 					System.out.println("Exiting the program. Thank you!");
 					return;
 				default:
 					System.out.println("Invalid. Please enter a valid option.");
 			}
 			}
 		}
catch (Exception e)
{
 			System.out.println("An unexpected error occurred: " + e.getMessage());
 		}
finally
{
 			// Close the Scanner in the finally block to ensure proper resource cleanup
 			scanner.close();
 			System.out.println("Finally block: This code always runs.");
 		}
 	}

private static void deposit(double amount)
{
 	if (amount <= 0)
{
 		throw new IllegalArgumentException("Deposit amount must be greater than zero.");
 	}
 	balance += amount;
 	System.out.println("Deposit successful. New balance: $" + balance);
}

private static void withdraw(double amount)
{
 	if (amount <= 0)
{
 		throw new IllegalArgumentException("Withdrawal amount must be greater than zero.");
 	}
 	if (amount > balance)
{
 		throw new IllegalStateException("Insufficient funds. Cannot withdraw $" + amount);
 	}
 	balance -= amount;
 	System.out.println("Withdrawal successful. New balance: $" + balance);
}

private static void checkBalance()
{
 System.out.println("Current balance: $" + balance);
}
}
In this example:
· The program presents a simple menu to the user with options for deposit, withdrawal, checking balance, and exiting the program.
· The deposit and withdraw methods simulate transactions and throw exceptions for invalid inputs or insufficient funds.
· The try-catch block in the main method catches any unexpected exceptions, providing a user-friendly error message.
· The finally block ensures that the Scanner is closed, regardless of whether an exception occurs or not.
This business example demonstrates how exception handling can be used in a banking context to ensure the program handles user interactions and transactions robustly.

Program 4
Copy your program for Activity 9 and add Try, Catch and Finally code as necessary.

Program 5
Create a program that manages a library's catalogue of books. Users can borrow and return books, and the program will handle exceptions related to book availability and invalid inputs.

Hints
· Display menu options – Borrow a book, Return a book, check available books and exit
· Use arrays to store the books and quantities in the library
· Use Methods for “borrow book”, return book” and “check available books” code
· Add try, catch and finally code to catch unexpected exceptions
