NEATH PORT TALBOT COLLEGE COLEG CASTELL NEDD PORT TALBOT

School of Maths & Science Science Practical

Food Tests

♦ Aim

To carry out a number of tests to identify the main classes of biological molecules.

♦ Introduction

A series of simple biochemical tests can be used to identify carbohydrates, proteins and lipids.

♦ Safety

Control Measures

- The wearing of safety glasses and a laboratory coat at all times will be sufficient to take account of most hazards and significant risks.
- Avoid skin contact with chemicals.
- Keep stoppers on bottles as much as possible.
- Keep flammable liquids away from flames.
- All waste is to be placed in the labelled container immediately after use.
- You are reminded of the need for good laboratory practice in order to maintain a safe working environment.

Hazards

Highly Flammable

Harmful

Irritant

Ethanol

Ethanol

Hydrochloric acid Sodium Hydroxide

BIOCHEMICAL TESTS FOR CARBOHYDRATES

A. Test for reducing sugar

Method

- 1. Bring the water in the water bath (i.e. beaker of water heated by Bunsen burner) up to boiling point and turn down the source of heat.
- 2. Take 2cm³ of the solution to be tested (e.g. glucose) and add 2cm³ of Benedict's reagent. Mix the reagents thoroughly.
- 3. Place the test tube in the water bath and leave for 5 minutes, shaking occasionally.

Results

If a reducing sugar is present, a precipitate will be formed. The test is partially quantitative; the more reducing sugar, the greater the amount and the darker the colour of the precipitate.

Amount of reducing sugar	<u>Colour of solution or precipitate</u>
No reducing sugar	Blue solution
Increasing quantity of reducing sugar	Green Yellow Brown Red

B. Test for non-reducing sugar

Information

There is no specific test for a non-reducing sugar. It can, however, be hydrolysed by boiling with dilute hydrochloric acid, into its constituent monosaccharides. These will then reduce Benedict's reagent in the normal way. A non-reducing sugar is thus identified by a negative reaction to Benedict's reagent **before** hydrolysis and a positive result **after** hydrolysis.

Method

- 1. Carry out the reducing sugar test.
- 2. Add 1cm³ of dilute hydrochloric acid to a **fresh** sample of 2cm³ of the solution to be tested e.g. sucrose, mix the solution and **boil for 2-3 minutes**.
- 3. Add sodium hydrogen carbonate **slowly** until the solution is neutral or slightly alkaline. Use pH paper to test for this. (N.B. if the NaHCO₃ is not added slowly, effervescence may be so brisk that some liquid will splash out of the tube.)
- 4. Carry out the reducing test again.

Results

A negative result (blue solution) after the first reducing sugar test, followed by a positive result (precipitate) after the second reducing sugar test, is an indication of a non-reducing sugar.

C. Test for starch

(This test must be carried out at room temperature. Do **not** boil the solution.)

Method

- 1. Place two drops of the solution to be tested in a depression in a spotting tile.
- 2. Add a drop of iodine/potassium iodide solution (iodine reagent).

Results

If starch is present, the yellow orange iodine reagent becomes a blue-black colour.

BIOCHEMICAL TESTS FOR PROTEINS AND LIPIDS

A. Test for proteins: the biuret test

(This test should be carried out at room temperature.)

Method

1. To 2cm^3 of the solution being tested e.g. albumin, add 2cm^3 of 0.4 mol / dm^3 sodium hydroxide solution and shake the tube to mix the contents.

2. Add 0.2 mol / dm^3 copper sulphate solution **a drop at a time**, shaking the tube continuously. Do not exceed 10 drops.

3. Repeat procedures 1 and 2 using water as a control instead of the test solution.

Results

The presence of a protein is indicated by a purple/mauve colouration. The control remains clear, or very slightly blue. (Positive results are sometimes obtained with non-protein material.)

B. Tests for lipids: Emulsion test

<u>Method</u>

- 1. Place 2cm^3 of the oil in a test tube and add 5cm^3 of ethanol.
- 2. Shake the tube thoroughly until all the oil is dissolved.
- 3. Add 5cm³ of water and shake gently.
- 4. As a control, repeat procedures 1 3 using water instead of oil.

Results

A milky suspension indicates the presence of a lipid.