NEATH PORT TALBOT COLLEGE COLEG CASTELL NEDD PORT TALBOT

School of Maths & Science Science Practical

To Determine an Enthalpy Change of Reaction

♦ Aim

The purpose of this experiment is to determine the enthalpy change for the displacement reaction:

$$Zn(s) + Cu^{2+}_{(aq)} \longrightarrow Cu_{(s)} + Zn^{2+}_{(aq)}$$

♦ Introduction

By adding an excess of zinc powder to a measured amount of aqueous copper (II) sulfate and measuring the temperature change over a period of time, you can then calculate the enthalpy change for the reaction.

♦ Safety

Control Measures

- The wearing of **safety glasses** and a **laboratory coat at all times** will be sufficient to take account of most hazards and significant risks.
- Keep stoppers on bottles as much as is possible
- Keep flammable liquids away from flames
- You are reminded of the need of good laboratory practise in order to maintain a safe working environment.

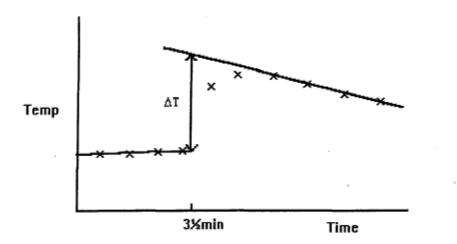
Hazards

Harmful/Irritant Copper (II) Sulfate Solution Zinc Powder

♦ Procedure

- 1. Pipette 25.0cm³ of the copper (II) sulfate solution into a polystyrene cup.
- 2. Weigh about 6g of zinc powder in the weighing bottle. Since this is an excess, there is no need to be accurate.
- 3. Put the thermometer into the solution, stir and record the temperature to the nearest 0.1° C every half minute for $2^{1}/_{2}$ minutes.
- 4. At precisely 3 minutes, add the zinc powder to the cup.
- 5. Continue stirring and record the temperature for an additional 6 minutes to complete the Results Table.

♦ Results


Time/Min	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
Temperature °C										
Time/Min	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5
Temperature °C										

♦ Calculations

- 1. Plot the temperature (y-axis) against time (x-axis).
- 2. Extrapolate the curve to 3.0 minutes to establish the maximum temperature rise as shown in figure 1

- 3. Calculate the enthalpy change for the quantities used. Assume that the density of the solution is $1.00 \, \mathrm{gcm}^{-3}$ and it's specific heat capacity is $4.18 \, \mathrm{J g}^{-1} \, \mathrm{k}^{-1}$. Ignore the heat capacity of the metals.
- 4. Calculate the enthalpy change for one mole of Zn and $CuSO_{4(aq)}$ and write the thermochemical equation for the reaction.

Fig 1.

