NEATH PORT TALBOT COLLEGE COLEG CASTELL NEDD PORT TALBOT

School of Maths & Science Science Practical

Functional Group Tests For Organic Compounds

♦ Aim

To carry out reactions on organic compounds which enable you to identify the functional group present.

Introduction

Organic compounds have characteristic reactions which one is able to use to identify the functional group present in the organic compound.

Control Measures

Hazards

- The wearing of **safety glasses** and a **laboratory coat** at all times will be sufficient to take account of most hazards and significant risks.
- All waste is to be placed in the labelled container immediately after use.
- You are reminded of the need of good laboratory practice in order to maintain a safe working environment.
- Keep Flammable liquids away from flames.

(Highly) Flammable
 Cyclohexene, Ethanol, Propan-1-ol
 Corrosive
 Nitric acid, Potassium Dichromate, Silver Nitrate solution, Bromine
 Harmful/Irritant
 1-Bromobutane, 1-chlorobutane, Cyclohexene, Silver Nitrate solution, bromine, potassium Manganate (VII)

solution.

Bromine

Toxic

POTASSIUM MANGANTAE (VII) AND SILVER NITRATE SOLUTION STAIN THE SKIN.

CARRY OUT ALL REACTIONS IN FUME CHAMBER

1. <u>Reactions of C=C (Alkenes)</u>

(i) Reaction of aqueous bromine, $Br_{2(aq)}$.

Place the cyclohexene (1cm³) in a test tube. Add dropwise the bromine solution - shake.

Observations;

Equation;

Type of reaction;

Equation using ethane;

Equation using propene;

 (ii) <u>Reaction with potassium manganate (VII) solution, KMnO₄(aq), in acid, dilute H₂SO₄. (Acidified potassium manganate (VII)). This is a purple solution. (In the syllabus it states reaction with aqueous Mn^{vii}). To the alkene add the acidified KMnO₄, shake and heat.
</u>

Observations;

Equation;

Equation with ethane;

Equation with propene;

Reactions of primary alcohols. (-OH). e.g. ethanol, propan-1-ol

The following reactions may be vigorous - carry out in fume chamber.

(i) <u>To ethanol (1cm³), add 1cm³ of acidified potassium manganate (VII) solution and</u> <u>warm using a water bath.</u>

Observations;

Equation;

Type of reaction;

(ii) <u>Repeat the above the reaction with prop an-1-ol.</u>

Observations;

Equation;

(iii)	To ethanol	(1 cm^3) ,	add 1	cm^3	of ac	idified	potassium	dichroma	ate (Vl) solutic	on and
	warm using	a wate	r bath	<u>.</u>			-				

Observations;

Equation;

Type of reaction;

(iv)<u>Repeat the above the reaction with propan-1-ol.</u>

Observations;

Equation;

Reaction of carboxylic acids (-COOH).

Use ethanoic acid as the carboxylic acid.

Add either sodium carbonate solution, Na₂CO₃ or sodium hydrogen carbonate, NaHCO₃, or you can add solid Na₂CO₃ or NaHCO₃ to the carboxylic acid or to a solution of the carboxylic acid in water. Test any gas given off by passing the gas through limewater solution.

Observations;

Name the gas evolved;

Equation;

Type of reaction;

Hydrolysis of Halogenoalkanes

For example CH₃CH₂X where X is Cl, Br or I.

Test 1. Take 5 drops of the halogenoalkanes and add 1 cm³ of dilute NaOH solution. (HYDROLYSIS). Add dilute HNO₃ to neutralise the excess NaOH and then add dilute silver nitrate,AgNO₃, solution. (This is the test for the presence of a halide ion).

Sample	Observation	Inference		
А				
В				
С				

Test 2. Add a few drops of dilute ammonia and concentrated ammonia solution to each of the samples A B and C and record your results below.

Sample Dilute Ammonia	Conc Ammonia	Inference
-----------------------	--------------	-----------